1
|
Maeno Z, Koiso H, Shitori T, Hiraoka K, Seki S, Namiki N. Syngas Production by Chemical Looping Dry Reforming of Methane over Ni-modified MoO 3/ZrO 2. Chem Asian J 2024; 19:e202301096. [PMID: 38146061 DOI: 10.1002/asia.202301096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 12/27/2023]
Abstract
We investigated supported-MoO3 materials effective for the chemical looping dry reforming of methane (CL-DRM) to decrease the reaction temperature. Ni-modified molybdenum zirconia (Ni/MoO3/ZrO2) showed CL-DRM activity under isothermal reaction conditions of 650 °C, which was 100-200 °C lower than the previously reported oxide-based materials. Ni/MoO3/ZrO2 activity strongly depends on the MoO3 loading amount. The optimal loading amount was 9.0 wt.% (Ni/MoO3(9.0)/ZrO2), wherein two-dimensional polymolybdate species were dominantly formed. Increasing the loading amount to more than 12.0 wt.% resulted in a loss of activity owing to the formation of bulk Zr(MoO4)2 and/or MoO3. In situ Mo K-edge XANES studies revealed that the surface polymolybdate species serve as oxygen storage sites. The Mo6+ species were reduced to Mo4+ species by CH4 to produce CO and H2. The reduced Mo species reoxidized by CO2 with the concomitant formation of CO. The developed Ni/MoO3(9.0)/ZrO2 was applied to the long-term CL-DRM under high concentration conditions (20 % CH4 and 20 % CO2) at 650 °C, with two pathways possible for converting CH4 and CO2 to CO and H2 via the redox reaction of the Mo species and coke formation.
Collapse
Affiliation(s)
- Zen Maeno
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Hiroki Koiso
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Toshiki Shitori
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Koji Hiraoka
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Shiro Seki
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| | - Norikazu Namiki
- School of Advanced Engineering, Kogakuin University, 2665-1, Nakano-machi, 192-0015, Hachioji, Tokyo, Japan
| |
Collapse
|