1
|
Lebel ED, Michanowicz DR, Bilsback KR, Hill LAL, Goldman JSW, Domen JK, Jaeger JM, Ruiz A, Shonkoff SBC. Composition, Emissions, and Air Quality Impacts of Hazardous Air Pollutants in Unburned Natural Gas from Residential Stoves in California. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15828-15838. [PMID: 36263944 PMCID: PMC9671046 DOI: 10.1021/acs.est.2c02581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 05/15/2023]
Abstract
The presence of hazardous air pollutants (HAPs) entrained in end-use natural gas (NG) is an understudied source of human health risks. We performed trace gas analyses on 185 unburned NG samples collected from 159 unique residential NG stoves across seven geographic regions in California. Our analyses commonly detected 12 HAPs with significant variability across region and gas utility. Mean regional benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations in end-use NG ranged from 1.6-25 ppmv─benzene alone was detected in 99% of samples, and mean concentrations ranged from 0.7-12 ppmv (max: 66 ppmv). By applying previously reported NG and methane emission rates throughout California's transmission, storage, and distribution systems, we estimated statewide benzene emissions of 4,200 (95% CI: 1,800-9,700) kg yr-1 that are currently not included in any statewide inventories─equal to the annual benzene emissions from nearly 60,000 light-duty gasoline vehicles. Additionally, we found that NG leakage from stoves and ovens while not in use can result in indoor benzene concentrations that can exceed the California Office of Environmental Health Hazard Assessment 8-h Reference Exposure Level of 0.94 ppbv─benzene concentrations comparable to environmental tobacco smoke. This study supports the need to further improve our understanding of leaked downstream NG as a source of health risk.
Collapse
Affiliation(s)
- Eric D. Lebel
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Drew R. Michanowicz
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
- Harvard
T.H. Chan School of Public Health, C-CHANGE, Boston, Massachusetts 02215, United States
| | - Kelsey R. Bilsback
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Lee Ann L. Hill
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Jackson S. W. Goldman
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Jeremy K. Domen
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Jessie M. Jaeger
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Angélica Ruiz
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
| | - Seth B. C. Shonkoff
- PSE
Healthy Energy, 1440
Broadway, Suite 750, Oakland, California 94612, United States
- Department
of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720, United States
- Energy
Technologies Area, Lawrence Berkeley National
Lab, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Synovec RE, Mikaliunaite L. Application of Porous Layer Open Tubular Columns: Beyond Permanent Gases. LCGC NORTH AMERICA 2022. [DOI: 10.56530/lcgc.na.ew7472z7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Porous layer open tubular (PLOT) columns are traditionally built with particles that are adhered to the tubing walls. These columns have unique selectivity and provide a great alternative when gaseous samples need to be separated, but these columns also have been used to separate higher boiling point analytes. There are many different commercially available stationary phases of PLOT columns, including alumina-based columns, molecular sieves, and porous polymers. Alumina-based columns have an aluminum oxide stationary phase that is then deactivated with different salts. These columns have high capacity, superior loading ability, and produce symmetrical peaks. Molecular sieve columns are designed specifically for permanent gas separations because the columns have high retention. Porous polymer columns are highly hydrophobic, making them more applicable to analyzing a wider range of samples.
Collapse
|
3
|
Michanowicz DR, Dayalu A, Nordgaard CL, Buonocore JJ, Fairchild MW, Ackley R, Schiff JE, Liu A, Phillips NG, Schulman A, Magavi Z, Spengler JD. Home is Where the Pipeline Ends: Characterization of Volatile Organic Compounds Present in Natural Gas at the Point of the Residential End User. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10258-10268. [PMID: 35762409 PMCID: PMC9301916 DOI: 10.1021/acs.est.1c08298] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The presence of volatile organic compounds (VOCs) in unprocessed natural gas (NG) is well documented; however, the degree to which VOCs are present in NG at the point of end use is largely uncharacterized. We collected 234 whole NG samples across 69 unique residential locations across the Greater Boston metropolitan area, Massachusetts. NG samples were measured for methane (CH4), ethane (C2H6), and nonmethane VOC (NMVOC) content (including tentatively identified compounds) using commercially available USEPA analytical methods. Results revealed 296 unique NMVOC constituents in end use NG, of which 21 (or approximately 7%) were designated as hazardous air pollutants. Benzene (bootstrapped mean = 164 ppbv; SD = 16; 95% CI: 134-196) was detected in 95% of samples along with hexane (98% detection), toluene (94%), heptane (94%), and cyclohexane (89%), contributing to a mean total concentration of NMVOCs in distribution-grade NG of 6.0 ppmv (95% CI: 5.5-6.6). While total VOCs exhibited significant spatial variability, over twice as much temporal variability was observed, with a wintertime NG benzene concentration nearly eight-fold greater than summertime. By using previous NG leakage data, we estimated that 120-356 kg/yr of annual NG benzene emissions throughout Greater Boston are not currently accounted for in emissions inventories, along with an unaccounted-for indoor portion. NG-odorant content (tert-butyl mercaptan and isopropyl mercaptan) was used to estimate that a mean NG-CH4 concentration of 21.3 ppmv (95% CI: 16.7-25.9) could persist undetected in ambient air given known odor detection thresholds. This implies that indoor NG leakage may be an underappreciated source of both CH4 and associated VOCs.
Collapse
Affiliation(s)
- Drew R. Michanowicz
- Harvard
T.H. Chan School of Public Health, C-CHANGE, Boston, Massachusetts 02215 United States
- PSE
Healthy Energy, Oakland, California 94612, United States
- ,
| | - Archana Dayalu
- Atmospheric
and Environmental Research (AER), Lexington, Massachusetts 02421, United States
| | | | - Jonathan J. Buonocore
- Harvard
T.H. Chan School of Public Health, C-CHANGE, Boston, Massachusetts 02215 United States
| | - Molly W. Fairchild
- Home
Energy Efficiency Team (HEET), Cambridge, Massachusetts 02139, United States
| | - Robert Ackley
- Gas
Safety Inc., Southborough, Massachusetts 01772, United States
| | - Jessica E. Schiff
- Harvard
T.H. Chan School of Public Health, Boston, Massachusetts 02215, United States
| | - Abbie Liu
- Harvard
T.H. Chan School of Public Health, Boston, Massachusetts 02215, United States
| | | | - Audrey Schulman
- Home
Energy Efficiency Team (HEET), Cambridge, Massachusetts 02139, United States
| | - Zeyneb Magavi
- Home
Energy Efficiency Team (HEET), Cambridge, Massachusetts 02139, United States
| | - John D. Spengler
- Harvard
T.H. Chan School of Public Health, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Dynamic vapor microextraction of ignitable liquid from casework containers. Forensic Sci Int 2022; 336:111315. [DOI: 10.1016/j.forsciint.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
|
5
|
Harries ME, Jeerage KM. Preservation of vapor samples on adsorbent alumina capillaries and implications for field sampling. J Chromatogr A 2021; 1660:462670. [PMID: 34814090 PMCID: PMC9832929 DOI: 10.1016/j.chroma.2021.462670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023]
Abstract
Dynamic vapor microextraction (DVME) is a vapor preconcentration method that employs a capillary trap coated with an adsorbent, followed by solvent elution to recover the sample. DVME has been developed for applications in the laboratory, including highly precise vapor pressure measurements, and in the field. When vapor collection is conducted outside the laboratory, samples must almost always undergo some interval of storage representing the time between collection and analysis. This interval may be hours, days, or longer, depending on the situation. Regardless, in all situations there must be confidence that the integrity of the samples is maintained until processing and analysis. In this paper, we present results of two studies that tested the stability of a 50% weathered gasoline headspace sample on alumina PLOT (porous layer open tubular) capillaries stored at room temperature for periods from 24 h up to 20 wk. We used principal component analysis (PCA) to reduce the dimensionality of the chromatographic and mass spectral data and elucidate trends in stability with respect to the complex sample's range of hydrocarbon classes and molecular weights. Both analyses identified changes over storage periods of six weeks or more. The hydrocarbon class analysis, which used selected ion monitoring (SIM) data as input, proved more sensitive to changes over shorter storage periods. Sample integrity was preserved for at least 24 h, but losses, especially of high-volatility compounds, occurred by 168 h (7 d). Near total loss of sample occurred by 20 wk. These findings, which are specific to the sample, adsorbent, and storage conditions, will guide choices in experimental and instrumental design to ensure that data from future field studies is reliable.
Collapse
Affiliation(s)
- Megan E. Harries
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, Colorado, United States 80305
| | - Kavita M. Jeerage
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), 325 Broadway, Boulder, Colorado, United States 80305,Corresponding author: 1.303.497.4968 (telephone); 1.303.497.5030 (fax);
| |
Collapse
|
6
|
Casey JA, Cushing L, Depsky N, Morello-Frosch R. Climate Justice and California's Methane Superemitters: Environmental Equity Assessment of Community Proximity and Exposure Intensity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14746-14757. [PMID: 34668703 PMCID: PMC8936179 DOI: 10.1021/acs.est.1c04328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Methane superemitters emit non-methane copollutants that are harmful to human health. Yet, no prior studies have assessed disparities in exposure to methane superemitters with respect to race/ethnicity, socioeconomic status, and civic engagement. To do so, we obtained the location, category (e.g., landfill, refinery), and emission rate of California methane superemitters from Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) flights conducted between 2016 and 2018. We identified block groups within 2 km of superemitters (exposed) and 5-10 km away (unexposed) using dasymetric mapping and assigned level of exposure among block groups within 2 km (measured via number of superemitter categories and total methane emissions). Analyses included 483 superemitters. The majority were dairy/manure (n = 213) and oil/gas production sites (n = 127). Results from fully adjusted logistic mixed models indicate environmental injustice in methane superemitter locations. For example, for every 10% increase in non-Hispanic Black residents, the odds of exposure increased by 10% (95% confidence interval (CI): 1.04, 1.17). We observed similar disparities for Hispanics and Native Americans but not with indicators of socioeconomic status. Among block groups located within 2 km, increasing proportions of non-White populations and lower voter turnout were associated with higher superemitter emission intensity. Previously unrecognized racial/ethnic disparities in exposure to California methane superemitters should be considered in policies to tackle methane emissions.
Collapse
Affiliation(s)
- Joan A. Casey
- Columbia University Mailman School of Public Health, Department of Environmental Health Sciences, New York, NY 10034, USA
- Co-corresponding authors: ,
| | - Lara Cushing
- University of California, Los Angeles Fielding School of Public Health, Department of Environmental Health Sciences, Los Angeles, CA 90095, USA
| | - Nicholas Depsky
- University of California, Berkeley, Energy and Resources Group, Berkeley, CA 94720, USA
| | - Rachel Morello-Frosch
- University of California, Berkeley, Department of Environmental Science, Policy and Management and School of Public Health, Berkeley, CA 94720, USA
- Co-corresponding authors: ,
| |
Collapse
|
7
|
Mikaliunaite L, Sudol PE, Cain CN, Synovec RE. Baseline correction method for dynamic pressure gradient modulated comprehensive two-dimensional gas chromatography with flame ionization detection. J Chromatogr A 2021; 1652:462358. [PMID: 34237483 DOI: 10.1016/j.chroma.2021.462358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022]
Abstract
A baseline correction method is developed for comprehensive two-dimensional (2D) chromatography (GC × GC) with flame-ionization detection (FID) using dynamic pressure gradient modulation (DPGM). The DPGM-GC × GC-FID utilized porous layer open tubular (PLOT) columns in both dimensions to focus on light hydrocarbon separations. Since DPGM is nominally a stop-flow modulation technique, a rhythmic baseline disturbance is observed in the FID signal that cycles with the modulation period (PM). This baseline disturbance needs to be corrected to optimize trace analysis. The baseline correction method has three steps: collection of a background "blank" chromatogram and multiplying it by an optimized normalization factor, subtraction of the normalization-optimized background chromatogram from a sample chromatogram, and application of Savitzky-Golay smoothing. An alkane standard solution, containing pentane, hexane and heptane was used for method development, producing linear calibration curves (r2 > 0.991) over a broad concentration range (7.8 ppm - 4000 ppm). Further, the limit-of-detection (LOD) and limit-of-quantification (LOQ) were determined for pentane (LOD = 2.5 ppm, LOQ = 8.2 ppm), hexane (LOD = 0.9 ppm, LOQ = 3.0 ppm), and heptane (LOD = 1.9 ppm, LOQ = 6.4 ppm). A natural gas sample separation illustrated method applicability, whereby the DPGM produced a signal enhancement (SE) of 30 for isopentane, where SE is defined as the height of the tallest 2D peak in the modulated chromatogram for the analyte divided by the height of the unmodulated 1D peak. The 30-fold SE resulted in about a 10-fold improvement in the signal-to-noise ratio (S/N) for isopentane. Additional versatility of the baseline correction method for more complicated samples was demonstrated for an unleaded gasoline sample, which enabled the detection (and visual appearance) of trace components.
Collapse
Affiliation(s)
- Lina Mikaliunaite
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Paige E Sudol
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Caitlin N Cain
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA
| | - Robert E Synovec
- Department of Chemistry, University of Washington, Box 351700, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Harries ME, Wasserman SS, Berry JL, Jeerage KM. Characterization of a headspace sampling method with a five-component diesel fuel surrogate. Forensic Chem 2021. [DOI: 10.1016/j.forc.2020.100301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Harries ME, Beuning CN, Johnston BL, Lovestead TM, Widegren JA. Rapid Vapor-Collection Method for Vapor Pressure Measurements of Low-Volatility Compounds. Anal Chem 2020; 92:16253-16259. [PMID: 33231433 DOI: 10.1021/acs.analchem.0c04131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dynamic vapor microextraction (DVME) is a new method that enables rapid vapor pressure measurements on large molecules with state-of-the-art measurement uncertainty for vapor pressures near 1 Pa. Four key features of DVME that allow for the rapid collection of vapor samples under thermodynamic conditions are (1) the use of a miniature vapor-equilibration vessel (the "saturator") to minimize the temperature gradients and internal volume, (2) the use of a capillary vapor trap to minimize the internal volume, (3) the use of helium carrier gas to minimize nonideal mixture behavior, and (4) the direct measurement of pressure inside the saturator to accurately account for overpressure caused by viscous flow. The performance of DVME was validated with vapor pressure measurements of n-eicosane (C20H42) at temperatures from 344 to 374 K. A thorough uncertainty analysis indicated a relative standard uncertainty of 2.03-2.82% for measurements in this temperature range. The measurements were compared to a reference correlation for the vapor pressures of n-alkanes; the deviation of the measurements from the correlation was ≤2.85%. The enthalpy of vaporization of n-eicosane at 359.0 K was calculated to be ΔvapH = 91.27 ± 0.28 kJ/mol compared to ΔvapH(corr) = 91.44 kJ/mol for the reference correlation. Total measurement periods as short as 15 min (3 min of thermal equilibration plus 12 min of carrier gas flow) were shown to be sufficient for high-quality vapor pressure measurements at 364 K.
Collapse
Affiliation(s)
- Megan E Harries
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| | - Cheryle N Beuning
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| | - Bridger L Johnston
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| | - Tara M Lovestead
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| | - Jason A Widegren
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, United States
| |
Collapse
|
10
|
Harries ME, Bruno TJ. Field demonstration of portable vapor sampling in a simulated cargo container. Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Mansfield E, Diky V. Bubble Point Measurements of Neopentane + Ethane Mixtures. JOURNAL OF CHEMICAL AND ENGINEERING DATA 2019; 64:10.1021/acs.jced.8b01106. [PMID: 31274884 PMCID: PMC6604645 DOI: 10.1021/acs.jced.8b01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bubble point measurements have been taken on three compositions of the neopentane + ethane system. The results are modeled with a Peng-Robinson equation with symmetrical mixing rule and a Helmholtz-energy-based 4-parameter model. Interaction parameters for all fits are provided. The results are consistent with other similar mixture systems (neopentane + propane and ethane + pentane) and demonstrate near ideal mixing.
Collapse
Affiliation(s)
- Elisabeth Mansfield
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), Boulder, CO 80305, , phone: 303-497-6405, fax: 303-497-5030
| | - Vladimir Diky
- Applied Chemicals and Materials Division, National Institute of Standards and Technology (NIST), Boulder, CO 80305, , phone: 303-497-6405, fax: 303-497-5030
| |
Collapse
|
12
|
Abstract
The quest for a reliable means to detect cannabis intoxication with a breathalyzer is ongoing. To design such a device, it is important to understand the fundamental thermodynamics of the compounds of interest. The vapor pressures of two important cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), are presented, as well as the predicted normal boiling temperature (NBT) and the predicted critical constants (these predictions are dependent on the vapor pressure data). The critical constants are typically necessary to develop an equation of state (EOS). EOS-based models can provide estimations of thermophysical properties for compounds to aid in designing processes and devices. An ultra-sensitive, quantitative, trace dynamic headspace analysis sampling called porous layered open tubular-cryoadsorption (PLOT-cryo) was used to measure vapor pressures of these compounds. PLOT-cryo affords short experiment durations compared to more traditional techniques for vapor pressure determination (minutes versus days). Additionally, PLOT-cryo has the inherent ability to stabilize labile solutes because collection is done at reduced temperature. The measured vapor pressures are approximately 2 orders of magnitude lower than those measured for n-eicosane, which has a similar molecular mass. Thus, the difference in polarity of these molecules must be impacting the vapor pressure dramatically. The vapor pressure measurements are presented in the form of Clausius-Clapeyron (or van't Hoff) equation plots. The predicted vapor pressures that would be expected at near ambient conditions (25 °C) are also presented.
Collapse
|
13
|
Buckingham GT, Porterfield JP, Kostko O, Troy TP, Ahmed M, Robichaud DJ, Nimlos MR, Daily JW, Ellison GB. The thermal decomposition of the benzyl radical in a heated micro-reactor. II. Pyrolysis of the tropyl radical. J Chem Phys 2016; 145:014305. [DOI: 10.1063/1.4954895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Grant T. Buckingham
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
| | - Jessica P. Porterfield
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | - Oleg Kostko
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tyler P. Troy
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - David J. Robichaud
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
| | - Mark R. Nimlos
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden Colorado 80401, USA
| | - John W. Daily
- Department of Mechanical Engineering, Center for Combustion and Environmental Research, University of Colorado, Boulder, Colorado 80309-0427, USA
| | - G. Barney Ellison
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| |
Collapse
|