1
|
Liang Y, Xiang Y, Wei Z, Avena M, Xiong J, Hou J, Wang M, Tan W. Complexation mechanism of Pb 2+ on Al-substituted hematite: A modeling study and theoretical calculation. ENVIRONMENTAL RESEARCH 2024; 252:118935. [PMID: 38621630 DOI: 10.1016/j.envres.2024.118935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Hematite nanoparticles commonly undergoes isomorphic substitution of Al3+ in nature, while how the Al-substitution-induced morphological change, defective structure and newly generated Al-OH sites affect the adsorption behavior of hematite for contaminants remains poorly understood. Herein, the interfacial reactions between Al-substituted hematite and Pb2+ was investigated via CD-MUSIC modeling and DFT calculations. As the Al content increased from 0% to 9.4%, Al-substitution promoted the proportion of (001) facets and caused Fe vacancies on hematite, which increased the total active site density of hematite from 5.60 to 17.60 sites/nm2. The surface positive charge of hematite significantly increased from 0.096 to 0.418 C/m2 at pH 5.0 due to the increases in site density and proton affinity (logKH) of hematite under Al-substitution. The adsorption amount of hematite for Pb2+ increased from 3.92 to 9.74 mmol/kg at pH 5.0 and 20 μmol/L initial Pb2+ concentration with increasing Al content. More Fe vacancies may lead to a weaker adsorption energy (Ead) of hematite for Pb2+, while the Ead was enhanced at higher Al content. The adsorption affinity (logKPb) of bidentate Pb complexes slightly increased while that of tridentate Pb complexes decreased with increasing Al content due to the presence of ≡ AlOH-0.5 and ≡ Fe2AlO-0.5 sites. Tridentate Pb complexes were dominant species on the surface of pure hematite, while bidentate ones became more dominant with increasing Al content. The obtained model parameters and molecular scale information are of great importance for better describing and predicting the environmental fate of toxic heavy metals in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Yu Liang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China; State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiyuan Wei
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Marcelo Avena
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, B8000CPB, Bahía Blanca, Argentina
| | - Juan Xiong
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxia Wang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Xiang Y, Liu J, Chen Y, Zhang H, Ren L, Ye B, Tan W, Andreas K, Hou J. The change of coordination environments induced by vacancy defects in hematite leads to a contrasting difference between cation Pb(II) and oxyanion As(V) immobilization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123318. [PMID: 38218545 DOI: 10.1016/j.envpol.2024.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Hematite is an iron oxide commonly found in terrestrial environments and plays an essential role in controlling the migration of heavy metal(loid)s in groundwater and sediments. Although defects were shown to exist both in naturally occurring and laboratory-synthesized hematite, their influences on the immobilization of heavy metal(loid)s remain poorly understood. In this study, hematite samples with tunable vacancy defect concentrations were synthesized to evaluate their adsorption capacities for the cation Pb(II) and for the oxyanion As(V). The defects in hematite were characterized using XRD, TEM-EDS mapping, position annihilation lifetime spectroscopy, and XAS. The surface charge characteristics in defective hematite were investigated using zeta potential measurements. We found that Fe vacancies were the primary defect type in the hematite structure. Batch experiments confirmed that Fe vacancies in hematite promoted As(V) adsorption, while they decreased Pb(II) adsorption. The reason for the opposite effects of Fe vacancies on Pb(II) and As(V) immobilization was investigated using DFT calculations and EXAFS analysis. The results revealed that Fe vacancies altered As-Fe coordination from a monodentate to a bidentate complex and increased the length of the Pb-Fe bond on the hematite surface, thereby leading to an increase in As(V) bonding strength, while decreasing Pb(II) adsorption affinity. In addition, the zeta potential analysis demonstrated that the presence of Fe vacancies led to an increase in the isoelectric point (IEP) of hematite samples, which therefore decreased the attraction for the cation Pb(II) and increased the attraction for the oxyanion As(V). The combination of these two effects caused by defects contributed to the contrasting difference between cation Pb(II) and oxyanion As(V) immobilization by defective hematite. Our study therefore provides new insights into the migration and fate of toxic heavy metal(loid)s controlled by iron minerals.
Collapse
Affiliation(s)
- Yongjin Xiang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Juan Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen Chen
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Hongjun Zhang
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Lu Ren
- School of Civil Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bangjiao Ye
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kappler Andreas
- Geomicrobiology, Department of Geosciences, University of Tuebingen, Tuebingen, 72076, Germany
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Lin Z, Huan Z, Zhang J, Li J, Li Z, Guo P, Zhu Y, Zhang T. CTAB-functionalized δ-FeOOH for the simultaneous removal of arsenate and phenylarsonic acid in phenylarsenic chemical warfare. CHEMOSPHERE 2022; 292:133373. [PMID: 34958793 DOI: 10.1016/j.chemosphere.2021.133373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/23/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
This study prepared a cetyltrimethylammonium bromide (CTAB) functionalized δ-FeOOH using the coprecipitation method to remove arsenate and phenylarsonic acid in water polluted by phenylarsonic chemical warfare agents. Under neutral conditions, the adsorption capacity for arsenate and phenylarsonic acid was 45.7 and 85.3 mg g-1, respectively. The adsorption process conformed to the pseudo-second-order kinetics and Freundlich isothermal adsorption model, and the adsorption was spontaneous and endothermic. The CTAB-functionalized δ-FeOOH could effectively resist the interference of coexisting anions except for CO32-, SiO32- and PO43-. Furthermore, the adsorption mechanism was proposed by combining the adsorption experimental results, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and density functional theory analyses. The results showed that the adsorption of arsenate by the CTAB-functionalized δ-FeOOH was mainly through the formation of bidentate-dinuclear inner-sphere complexes and electrostatic interactions. While for phenylarsonic acid, the formation of monodentate-mononuclear inner-sphere complexes on (100) and (110) crystal facets, and the formation of bidentate-dinuclear inner-sphere complexes on the (002) crystal facet, as well as hydrogen bonding, electrostatic interaction, and π-hydrophobic interaction between organic compounds were the primary mechanism. Moreover, the CTAB-functionalized δ-FeOOH could maintain about 60% of the adsorption capacity for the two pollutants after five cycles. Overall, CTAB-functionalized δ-FeOOH has good potential for the remediation of inorganic and organic arsenic-contaminated water bodies.
Collapse
Affiliation(s)
- Zuhong Lin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenglai Huan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China; Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengfei Guo
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
5
|
Zhang J, Li T, Li X, Liu Y, Li N, Wang Y, Li X. A key role of inner-cation-π interaction in adsorption of Pb(II) on carbon nanotubes: Experimental and DFT studies. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125187. [PMID: 33545646 DOI: 10.1016/j.jhazmat.2021.125187] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/27/2020] [Accepted: 01/04/2021] [Indexed: 05/04/2023]
Abstract
Herein the adsorption and desorption of Pb2+ on oxidized (O-CNTs) and graphitized multi-walled carbon nanotubes (G-CNTs) were studied, and detailed adsorption mechanisms were discussed by experimental characterization and density functional theory (DFT) calculation. The adsorption of Pb2+ on CNTs was co-guided by complexation, ion exchange, electrostatic and cation-π interactions. According to the abnormally low release ratio of Pb2+ on both O-CNTs and G-CNTs (<9.03%), the O-containing groups on CNTs surface are not the only key factor affecting the adsorption behavior. The pore filling and complexation are the main mechanisms leading to irreversible adsorption, especially the important role of the inner-cation-π interaction in Pb2+ adsorption into the inner channel of CNTs at the high initial Pb2+ concentration, and DFT calculations further confirmed this result. The adsorption energy of the inner-cation-π interaction between Pb2+ and CNTs can be as high as - 77.851 kJ/mol, which is much higher than other interactions (≤-41.488 kJ/mol). Moreover, the stability of various adsorption mechanisms by HOMO-LUMO energy gap (Egap), electronic chemical potential (µ) and global hardness (η) were quantitatively measured and further revealed the inner-cation-π interaction is more stable. This study provides a deeper understanding of the removal of heavy metals by porous carbon-based nanomaterials.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Tao Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Xiaoyun Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China.
| | - Yifan Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Nana Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| | - Yue Wang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, China; International Joint Research Centre of Shaanxi Province for Pollutants Exposure and Eco-environmental Health, Xi'an 710119, China
| |
Collapse
|
6
|
Yu L, Li Y, Ruan Y. Fe-Mn Oxides Based Multifunctional Adsorptive/Electrosensing Nanoplatforms: Dynamic Site Rearrangement for Metal Ion Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3967-3975. [PMID: 33635053 DOI: 10.1021/acs.est.0c07733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving structural requirements for the exclusive selectivity of adsorbent to a specific metal remains challenging, as certain metal ions show similar adsorptive behaviors and preference toward a given site. We reported the morphology and oxidation state-dependent selectivity manipulating of layered oxides by controlling the dynamic evolution of different adsorptive sites. The computational investigation predicted the site-specific partitioning trends of metal ions at two sites of manganese oxide (MnO2) layers: the lateral edge sites (LESs) and octahedral vacancy sites (OVSs). In contrast to the predominant occupation of the OVSs for other metal ions, the binding of lead (Pb) ions was energetically favored at both the sites. We assembled ultrathin MnO2 nanosheets on the magnetic iron oxides to first enhance the accessibility of the LESs. A sequential ligand-promoted partial reduction of the atomic MnO2 layers induced the edge-to-interlayer migration of Mn atoms to block the nonspecific OVSs and activate the LESs, enabling a superior selectivity to Pb. In addition, the iron oxides helped construct a multifunctional adsorptive/electrosensing platform for Pb regarding their facile magnetic separation and electrochemical activity. Simultaneous selective adsorption and on-site monitoring of Pb(II) were achieved on this nanoplatform, owing to its satisfactory stability and sensitivity without an obvious matrix effect.
Collapse
Affiliation(s)
- Li Yu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People's Republic of China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yuchan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, People's Republic of China
| |
Collapse
|
7
|
Rudel HE, Lane MKM, Muhich CL, Zimmerman JB. Toward Informed Design of Nanomaterials: A Mechanistic Analysis of Structure-Property-Function Relationships for Faceted Nanoscale Metal Oxides. ACS NANO 2020; 14:16472-16501. [PMID: 33237735 PMCID: PMC8144246 DOI: 10.1021/acsnano.0c08356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nanoscale metal oxides (NMOs) have found wide-scale applicability in a variety of environmental fields, particularly catalysis, gas sensing, and sorption. Facet engineering, or controlled exposure of a particular crystal plane, has been established as an advantageous approach to enabling enhanced functionality of NMOs. However, the underlying mechanisms that give rise to this improved performance are often not systematically examined, leading to an insufficient understanding of NMO facet reactivity. This critical review details the unique electronic and structural characteristics of commonly studied NMO facets and further correlates these characteristics to the principal mechanisms that govern performance in various catalytic, gas sensing, and contaminant removal applications. General trends of facet-dependent behavior are established for each of the NMO compositions, and selected case studies for extensions of facet-dependent behavior, such as mixed metals, mixed-metal oxides, and mixed facets, are discussed. Key conclusions about facet reactivity, confounding variables that tend to obfuscate them, and opportunities to deepen structure-property-function understanding are detailed to encourage rational, informed design of NMOs for the intended application.
Collapse
Affiliation(s)
- Holly E Rudel
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
| | - Christopher L Muhich
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School for the Engineering of Matter, Transport, and Energy, Ira A Fulton Schools of Engineering, Arizona State University, Tempe, Arizona 85001, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), Yale University, New Haven, Connecticut 06511, United States
- School of Forestry and Environmental Studies, Yale University, 195 Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|