1
|
Mei H, Li Y, Wu S, He J. Natural plant polyphenols contribute to the ecological and healthy swine production. J Anim Sci Biotechnol 2024; 15:146. [PMID: 39491001 PMCID: PMC11533317 DOI: 10.1186/s40104-024-01096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/25/2024] [Indexed: 11/05/2024] Open
Abstract
The absence of trace amounts of natural bioactive compounds with important biological activities in traditional dietary models for global farm animals, coupled with an incomplete theoretical system for animal nutrition, has led to unbalanced and inadequate animal nutrition. This deficiency has adversely impacted animal health and the ecological environment, presenting formidable challenges to the advancement of the swine breeding industry in various countries around the world toward high-quality development. Recently, due to the ban of antibiotics for growth promotion in swine diets, botanical active compounds have been extensively investigated as feed additives. Polyphenols represent a broad group of plant secondary metabolites. They are natural, non-toxic, pollution-free, and highly reproducible compounds that have a wide range of physiological functions, such as antioxidant, anti-inflammatory, immunomodulatory, antiviral, antibacterial, and metabolic activities. Accordingly, polyphenols have been widely studied and used as feed additives in swine production. This review summarizes the structural characteristics, classification, current application situation, general properties of polyphenols, and the latest research advances on their use in swine production. Additionally, the research and application bottlenecks and future development of plant polyphenols in the animal feed industry are reviewed and prospected. This review aims to stimulate the in-depth study of natural plant polyphenols and the research and development of related products in order to promote the green, healthy, and high-quality development of swine production, while also providing ideas for the innovation and development in the theoretical system of animal nutrition.
Collapse
Affiliation(s)
- Huadi Mei
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China
| | - Yuanfei Li
- Jiangxi Province Key Laboratory of Genetic Improvement of Indigenous Chicken Breeds, Institute of Biotechnology, Nanchang Normal University, Nanchang, Jiangxi, 330000, China
| | - Shusong Wu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
2
|
Zhao X, Zhang Y, Rahman A, Chen M, Li N, Wu T, Qi Y, Zheng N, Zhao S, Wang J. Rumen microbiota succession throughout the perinatal period and its association with postpartum production traits in dairy cows: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:17-26. [PMID: 39022774 PMCID: PMC11253274 DOI: 10.1016/j.aninu.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
The transition period for dairy cows usually refers to the 3 weeks pre-calving to the 3 weeks post-calving. During this period, dairy cows undergo metabolic and physiological adaptations because of their susceptibility to metabolic and infectious diseases. Poor feeding management under these circumstances may adversely affect the health and subsequent production performance of the cows. Owing to long-term adaptation and evolution, the rumen has become a unique ecosystem inhabited by a complex microbial community closely associated with its natural host. Dietary components are metabolized by the rumen microbiota, and volatile fatty acids and microbial protein products can be used as precursor substances for synthesizing meat and milk components. The successful transition of perinatal dairy cows includes changes in diet, physiology, and the rumen microbiota. Rumen microbial profiles have been confirmed to be heritable and repairable; however, adverse circumstances affect rumen microbial composition, host digestion and metabolism, as well as postpartum production traits of dairy cows for a certain period. Preliminary evidence indicates a close relationship between the rumen microbiota and animal performance. Therefore, changes in rumen microbes during the transition period and the intrinsic links between the microbiota and host postpartum phenotypic traits need to be better understood to optimize production performance in ruminants.
Collapse
Affiliation(s)
- Xiaowei Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Xinjiang Agricultural University, Urumqi 830052, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashikur Rahman
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Wu
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Svane S, Lyngsie MC, Klitgaard JK, Karring H. Synergistic inhibition of ureolytic activity and growth of Klebsiella pneumoniae in vitro suggests cobinding of fluoride and acetohydroxamic acid at the urease active site and provides a novel strategy to combat ureolytic bacteria. Heliyon 2024; 10:e31209. [PMID: 38826744 PMCID: PMC11141357 DOI: 10.1016/j.heliyon.2024.e31209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/18/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The ability of ureolytic bacteria to break down stable urea to alkaline ammonia leads to several environmental and health challenges. Ureolytic bacteria such as Helicobacter pylori, Klebsiella pneumoniae, and Proteus mirabilis can become pathogenic and cause persistent infections that can be difficult to treat. Inhibiting urease activity can reduce the growth and pathogenicity of ureolytic bacteria. In the present in vitro study, we investigated the synergistic effects of tannic acid (TA) and the urease inhibitors fluoride (F-) and acetohydroxamic acid (AHA). The concentration of AHA needed for efficient inhibition of the ureolytic activity of K. pneumoniae can be significantly reduced if AHA is coapplied with tannic acid and sodium fluoride (NaF). Thus, only 1.20 μmol l-1 AHA in combination with 0.30 mmol l-1 tannic acid and 0.60 mmol l-1 NaF delayed the onset of ureolytic pH increase by 95.8 % and increased the growth lag phase by 124.3 % relative to untreated K. pneumoniae. At these concentrations, without AHA, TA and NaF increased the onset of the ureolytic pH change by only 37.0 % and the growth lag phase by 52.5 %. The strong inhibition obtained with low concentrations of AHA in triple-compound treatments suggests cobinding of F- and AHA at the urease active site and could reduce the side effects of AHA when it is employed as a drug against e.g. urinary tract infections (UTIs) and blocked catheters. This study reports the basis for a promising novel therapeutic strategy to combat infections caused by ureolytic bacteria and the formation of urinary tract stones and crystalline biofilms on catheters.
Collapse
Affiliation(s)
- Simon Svane
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Mie C. Lyngsie
- Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Janne K. Klitgaard
- Department of Biochemistry and Molecular Biology, Research Unit of Molecular Microbiology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
- Institute of Clinical Research, Research Unit of Clinical Microbiology, University of Southern Denmark, J. B. Winsløws Vej 21, 2. sal, 5000, Odense C, Denmark
| | - Henrik Karring
- Department of Green Technology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
4
|
Cheng Y, Chen T, Zheng G, Yang J, Yu B, Ma C. Comprehensively assessing priority odorants emitted from swine slurry combining nontarget screening with olfactory threshold prediction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170428. [PMID: 38286275 DOI: 10.1016/j.scitotenv.2024.170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024]
Abstract
The lack of one-to-one olfactory thresholds (OTs) poses an obstacle to the comprehensive assessment of priority odorants emitted from swine slurry using mass spectrometric nontarget screening. This study screened out highly performing quantitative structure-activity relationship (QSAR) models of OT prediction to complement nontarget screening in olfactory perception evaluation. A total of 27 compounds emitted at different slurry removal frequencies were identified and quantified using gas chromatography-mass spectrometry (GC-MS), including thiirane, dimethyl trisulfide (DMTS), and dimethyl tetrasulfide (DMQS) without OT records. Ridge regression (RR, R2 = 0.77, RMSE = 0.93, MAE = 0.73) and random forest regression (RFR, R2 = 0.76, RMSE = 0.97, MAE = 0.69) rather than the commonly used principal component regression (PCR) and partial least squares regression (PLSR) were used to assign OTs and assess the contributions of emerging volatile sulfur compounds (VSCs) to the sum of odor activity value (SOAV). Priority odorants were p-cresol (25.0-58.9 %) > valeric acid (8.3-31.7 %) > isovaleric acid (6.7-19.0 %) > dimethyl disulfide (4.7-15.7 %) > methanethiol (0-13.6 %) > isobutyric acid (0-8.6 %), whereas the contributions of three emerging VSCs were below 10 %. Vital olfactory active structures were identified by QSAR models as having high molecular polarity, high hydrophilicity, high charge quantity, flexible structure, high reactivity, and a high number of sulfur atoms. This protocol can be further extended to evaluate odor pollution levels for distinct odor sources and guide the development of pertinent deodorization technologies.
Collapse
Affiliation(s)
- Yuan Cheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodi Zheng
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bao Yu
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| |
Collapse
|
5
|
Li Y, Li X, Ma X, Qiu T, Fu X, Ma Z, Ping H, Li C. Livestock wastes from family-operated farms are potential important sources of potentially toxic elements, antibiotics, and estrogens in rural areas in North China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118456-118467. [PMID: 37910373 DOI: 10.1007/s11356-023-30663-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
The open-air storage and disposal of livestock waste from family-operated livestock farms can be a potential health threat to rural residents. In this study, the occurrence and seasonal distribution of 8 potentially toxic elements, 24 antibiotics, and 4 estrogens were investigated in 44 waste samples from 11 rural farms in North China. The results showed that these micropollutants were ubiquitous in livestock waste, with concentration ranges of 238.9-4555 mg/kg for potentially toxic elements, not detected (ND) to 286,672 μg/kg for antibiotics and ND to 229.5 μg/kg for estrogens. The pollutants in animal wastes showed seasonal variation. Since these wastes are directly applicable to nearby farmland without treatment, the risks those wastes pose to farmland soils were also evaluated. Risk assessment results showed that Zn, Cd, Hg, FF and DC in swine manures were at high risk, while total estrogens in chicken and dairy cattle manures were at high risk. The results will provide important data for the regulation of animal wastes produced by small-scale livestock farms in rural areas of China.
Collapse
Affiliation(s)
- Yang Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xinyu Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xupu Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Tianlei Qiu
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xincheng Fu
- Langfang Agricultural and Rural Bureau in Hebei Province, Langfang Hebei, 065000, China
| | - Zhihong Ma
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Hua Ping
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, 100097, China.
| |
Collapse
|
6
|
Dalby FR, Ambrose HW, Poulsen JS, Nielsen JL, Adamsen APS. Pig slurry organic matter transformation and methanogenesis at ambient storage temperatures. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1139-1151. [PMID: 37703095 DOI: 10.1002/jeq2.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Manure management is a significant source of global methane emissions, and there is an increased interest in understanding and predicting emissions. The hydrolysis rate of manure organic matter is critical for understanding and predicting methane emissions. We estimated hydrolysis rate constants of crude protein, fibers, and lipids and used the Arrhenius equation to describe its dependency on temperature. Simultaneously, measurements of methane emission, 13/12 C isotope ratios, and methanogen community were conducted. This was achieved by incubating fresh pig manure without inoculum at 10°C, 15°C, 20°C, and 25°C for 85 days in a lab-scale setup. Hydrolysis of hemicellulose and cellulose increased more with temperature than crude protein, but still, hydrolysis rate of crude protein was highest at all temperatures. Results suggested that crude protein consisted of multiple substrate groups displaying large differences in degradability. Lipids and lignin were not hydrolyzed during incubations. Cumulative methane emissions were 7.13 ± 2.69, 24.6 ± 8.00, 66.7 ± 4.8, and 105.7 ± 7.14 gCH4 kgVS -1 at 10°C, 15°C, 20°C, and 25°C, respectively, and methanogenic community shifted from Methanosphaera toward Methanocorpusculum over time and more quickly at higher temperatures. This study provides important parameter estimates and dependencies on temperature, which is important in mechanistic methane emission models. Further work should focus on characterizing quickly degradable substrate pools in the manure organic matter as they might be the main carbon source of methane emission from manure management.
Collapse
Affiliation(s)
- Frederik Rask Dalby
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Herald Wilson Ambrose
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
7
|
Dalby FR, Hansen MJ, Guldberg LB, Hafner SD, Feilberg A. Simple Management Changes Drastically Reduce Pig House Methane Emission in Combined Experimental and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3990-4002. [PMID: 36808979 PMCID: PMC9996816 DOI: 10.1021/acs.est.2c08891] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Reducing methane from livestock slurry is one of the quickest ways to counteract global warming. A straightforward strategy is to reduce slurry retention time inside pig houses by frequent transfer to outside storages, where temperature and therefore microbial activity are lower. We demonstrate three frequent slurry removal strategies in pig houses in a year-round continuous measurement campaign. Slurry funnels, slurry trays, and weekly flushing reduced slurry methane emission by 89, 81, and 53%, respectively. Slurry funnels and slurry trays reduced ammonia emission by 25-30%. An extended version of the anaerobic biodegradation model (ABM) was fitted and validated using barn measurements. It was then applied for predicting storage emission and shows that there is a risk of negating barn methane reductions due to increased emission from outside storage. Therefore, we recommend combining the removal strategies with anaerobic digestion pre-storage or storage mitigation technologies such as slurry acidification. However, even without storage mitigation technologies, predicted net methane reduction from pig houses and following outside storage was at least 30% for all slurry removal strategies.
Collapse
Affiliation(s)
- Frederik Rask Dalby
- Department of Biological
and Chemical Engineering, Aarhus University, 8000-DK Aarhus
N, Denmark
| | - Michael Jørgen Hansen
- Department of Biological
and Chemical Engineering, Aarhus University, 8000-DK Aarhus
N, Denmark
| | - Lise Bonne Guldberg
- Department of Biological
and Chemical Engineering, Aarhus University, 8000-DK Aarhus
N, Denmark
| | - Sasha Daniel Hafner
- Department of Biological
and Chemical Engineering, Aarhus University, 8000-DK Aarhus
N, Denmark
| | - Anders Feilberg
- Department of Biological
and Chemical Engineering, Aarhus University, 8000-DK Aarhus
N, Denmark
| |
Collapse
|
8
|
Liu J, Li X, Xu Y, Wu Y, Wang R, Zhang X, Hou Y, Qu H, Wang L, He M, Kupczok A, He J. Highly efficient reduction of ammonia emissions from livestock waste by the synergy of novel manure acidification and inhibition of ureolytic bacteria. ENVIRONMENT INTERNATIONAL 2023; 172:107768. [PMID: 36709675 DOI: 10.1016/j.envint.2023.107768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The global livestock system is one of the largest sources of ammonia emissions and there is an urgent need for ammonia mitigation. Here, we designed and constructed a novel strategy to abate ammonia emissions via livestock manure acidification based on a synthetic lactic acid bacteria community (LAB SynCom). The LAB SynCom possessed a wide carbon source spectrum and pH profile, high adaptability to the manure environment, and a high capability of generating lactic acid. The mitigation strategy was optimized based on the test and performance by adjusting the LAB SynCom inoculation ratio and the adding frequency of carbon source, which contributed to a total ammonia reduction efficiency of 95.5 %. Furthermore, 16S rDNA amplicon sequencing analysis revealed that the LAB SynCom treatment reshaped the manure microbial community structure. Importantly, 22 manure ureolytic microbial genera and urea hydrolysis were notably inhibited by the LAB SynCom treatment during the treatment process. These findings provide new insight into manure acidification that the conversion from ammonia to ammonium ions and the inhibition of ureolytic bacteria exerted a synergistic effect on ammonia mitigation. This work systematically developed a novel strategy to mitigate ammonia emissions from livestock waste, which is a crucial step forward from traditional manure acidification to novel and environmental-friendly acidification.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China; Bioinformatics Group, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Xia Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yanliang Xu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yutian Wu
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Ruili Wang
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Xiujuan Zhang
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Yaguang Hou
- Inner Mongolia Academy of Science and Technology, Hohhot 010010, China
| | - Haoli Qu
- Ministry of Agriculture, Nanjing Research Institute for Agricultural Mechanization, Nanjing 210014, China
| | - Li Wang
- Sichuan Academy of Forestry, Chengdu 610081, China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University & Research, Wageningen 6708PB, The Netherlands
| | - Jing He
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| |
Collapse
|
9
|
Xiao S, Zhang H, Zhu R, Liao X, Wu Y, Mi J, Wang Y. Ammonia reduction by the gdhA and glnA genes from bacteria in laying hens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112486. [PMID: 34237637 DOI: 10.1016/j.ecoenv.2021.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Ammonia emissions are a high-focus pollution issue in the livestock industry. Ammonia-degrading bacteria can assimilate ammonia nitrogen as a nitrogen source to promote their growth and reproduction, providing an environmentally friendly, low-cost and safe biological way to reduce ammonia emissions from livestock. However, it remains unclear how ammonia-degrading bacteria reduce ammonia emissions from animals and what are the key ammonia assimilation genes. In the present study, two strains with ammonia nitrogen-degrading abilities (Enterococcus faecium strain C2 and Bacillus coagulans strain B1) were screened from laying chicken caecal and faecal samples and reduced ammonia emission rates by 53.60% and 31.38%, respectively. The expression levels of the ammonia assimilation genes gdhA, glnA, and GMPS increased significantly. On this basis, we successfully constructed three clone strains (PET-GDH, PET-GS, and PET-GMPS) that expressed the gdhA, glnA and GMPS genes in E. coli, respectively, to verify their ammonia-reducing activities. The results of an in vitro fermentation study showed that the ammonia production of the PET-GDH and PET-GS groups was significantly lower than that of the empty vector group (p < 0.05), with ammonia emission reduction rates of 55.5% and 54.8%, respectively. However, there was no difference between the PET-GMPS and empty vector groups. These results indicate that gdhA and glnA may be key genes involved in the bacterial-mediated regulation of ammonia emissions by laying hens, and ammonia emissions may be reduced by regulating their expression. The results of the present study provide a theoretical basis for the construction of engineered bacteria to reduce ammonia production in animals.
Collapse
Affiliation(s)
- Shasha Xiao
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Huaidan Zhang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Rongke Zhu
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Xindi Liao
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Yinbao Wu
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Jiandui Mi
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China
| | - Yan Wang
- College of Animal Science, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
10
|
Dalby FR, Nikolausz M, Hansen MJ, Feilberg A. Effects of combined tannic acid/fluoride on sulfur transformations and methanogenic pathways in swine manure. PLoS One 2021; 16:e0257759. [PMID: 34555107 PMCID: PMC8459979 DOI: 10.1371/journal.pone.0257759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/10/2021] [Indexed: 01/04/2023] Open
Abstract
Livestock manure emits reduced sulfur compounds and methane, which affect nature and the climate. These gases are efficiently mitigated by addition of a tannic acid-sodium fluoride combination inhibitor (TA-NaF), and to some extent by acidification. In this paper, TA-NaF treatment was performed on swine manure to study the treatment influence on methanogenic pathways and sulfur transformation pathways in various laboratory experiments. Stable carbon isotope labeling revealed that both untreated and TA-NaF treated swine manures were dominated by hydrogenotrophic methanogenesis. However, in supplementary experiments in wastewater sludge, TA-NaF clearly inhibited acetoclastic methanogenesis, whereas acidification inhibited hydrogenotrophic methanogenesis. In swine manure, TA-NaF inhibited s-amino acid catabolism to a larger extent than sulfate reduction. Conversely, acidification reduced sulfate reduction activity more than s-amino acid degradation. TA-NaF treatment had no significant effect on methanogenic community structure, which was surprising considering clear effects on isotope ratios of methane and carbon dioxide. Halophile sulfate reducers adapted well to TA-NaF treatment, but the community change also depended on temperature. The combined experimental work resulted in a proposed inhibition scheme for sulfur transformations and methanogenic pathways as affected by TA-NaF and acidification in swine manure and in other inocula.
Collapse
Affiliation(s)
- Frederik Rask Dalby
- Department of Engineering, Air Quality Engineering, Aarhus University, Aarhus N, Denmark
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Jørgen Hansen
- Department of Engineering, Air Quality Engineering, Aarhus University, Aarhus N, Denmark
| | - Anders Feilberg
- Department of Engineering, Air Quality Engineering, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
11
|
Dalby FR, Hafner SD, Petersen SO, VanderZaag AC, Habtewold J, Dunfield K, Chantigny MH, Sommer SG. Understanding methane emission from stored animal manure: A review to guide model development. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:817-835. [PMID: 34021608 DOI: 10.1002/jeq2.20252] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
National inventories of methane (CH4 ) emission from manure management are based on guidelines from the Intergovernmental Panel on Climate Change using country-specific emission factors. These calculations must be simple and, consequently, the effects of management practices and environmental conditions are only crudely represented in the calculations. The intention of this review is to develop a detailed understanding necessary for developing accurate models for calculating CH4 emission from liquid manure, with particular focus on the microbiological conversion of organic matter to CH4 . Themes discussed are (a) the liquid manure environment; (b) methane production processes from a modeling perspective; (c) development and adaptation of methanogenic communities; (d) mass and electron conservation; (e) steps limiting CH4 production; (f) inhibition of methanogens; (g) temperature effects on CH4 production; and (h) limits of existing estimation approaches. We conclude that a model must include calculation of microbial response to variations in manure temperature, substrate availability and age, and management system, because these variables substantially affect CH4 production. Methane production can be reduced by manipulating key variables through management procedures, and the effects may be taken into account by including a microbial component in the model. When developing new calculation procedures, it is important to include reasonably accurate algorithms of microbial adaptation. This review presents concepts for these calculations and ideas for how these may be carried out. A need for better quantification of hydrolysis kinetics is identified, and the importance of short- and long-term microbial adaptation is highlighted.
Collapse
Affiliation(s)
- Frederik R Dalby
- Dep. of Biological and Chemical Engineering, Aarhus Univ., Aarhus, 8200, Denmark
| | - Sasha D Hafner
- Dep. of Biological and Chemical Engineering, Aarhus Univ., Aarhus, 8200, Denmark
- Hafner Consulting LLC, Reston, VA, 20191, USA
| | | | - Andrew C VanderZaag
- Ottawa Research and Development Ctr., Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Jemaneh Habtewold
- Ottawa Research and Development Ctr., Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Kari Dunfield
- School of Environmental Science, Univ. of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Martin H Chantigny
- Quebec Research and Development Ctr., Agriculture and Agri-Food Canada, Quebec, QC, G1V 2J3, Canada
| | - Sven G Sommer
- Dep. of Biological and Chemical Engineering, Aarhus Univ., Aarhus, 8200, Denmark
| |
Collapse
|
12
|
Kim S, Reza A, Shim S, Won S, Ra C. Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study. Animals (Basel) 2021; 11:ani11020311. [PMID: 33530600 PMCID: PMC7910917 DOI: 10.3390/ani11020311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Odor emission from swine production facilities can irritate the people living in surrounding areas, although the farmers consider odor emission as a part of farming practice. Despite the governmental and institutional efforts, odor-related complaints from the neighborhood communities around the swine farms are rapidly increasing and have been identified as a key concern to sustaining progress of the swine industry globally. Bio-liquor circulation systems (BCSs) in swine farms have become popular among the farmers as an odor reduction technology in Korea. However, due to the lack of appropriate operating strategies, the odor reduction capacity of BCSs is often depleted. In this lab-scale study, a real-time control strategy based on oxidation–reduction potential (ORP) and pH (mV) time profiles was developed and applied for BCS operation. This study shows the potential effectiveness of using ORP and pH (mV) time profiles as operational parameters for the BCS to improve swine manure properties in slurry pits and thus reduce odor emission. Abstract In this study, an attempt was made to develop a real-time control strategy using oxidation–reduction potential (ORP) and pH (mV) time profiles for the efficient operation of bio-liquor circulation system (BCS) in swine farms and its effectiveness in reducing odor emission through improving manure properties in the slurry pit was evaluated. The lab-scale BCS used in this study comprised a bioreactor and a slurry pit. The bioreactor was operated in a sequence of inflow of swine manure → anoxic phase → aerobic phase → circulation to the slurry pit. The improvement in swine manure properties was elucidated by comparing the results of the BCS slurry pit (circulation type, CT) and conventional slurry pit (non-circulation type, NCT). The results revealed that the ORP time profile successfully detected the nitrate knee point (NKP) in the anoxic phase. However, it was less stable in detecting the nitrogen break point (NBP) in the aerobic phase. The pH (mV) time profile showed a more efficient detection of NBP. Compared to the NCT slurry pit, concentrations of ammonium nitrogen (NH4-N) and soluble total organic carbon (STOC) and other analyzed swine manure properties were much lower in the CT slurry pit. In the aspect of odor reduction, around 98.3% of NH3 was removed in the CT slurry pit. The real-time controlled BCS can overcome the drawbacks of fixed time-based BCS operation and therefore can be considered as a useful tool to reduce odor emission from intensive swine farming operations. However, further studies and refinement in control algorithms might be required prior to its large-scale application.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
| | - Arif Reza
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
| | - Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
| | - Seunggun Won
- Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Korea;
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea; (S.K.); (A.R.); (S.S.)
- Correspondence: ; Tel.: +82-33-250-8618
| |
Collapse
|
13
|
Dalby FR, Hansen MJ, Feilberg A, Kümmel S, Nikolausz M. Effect of tannic acid combined with fluoride and lignosulfonic acid on anaerobic digestion in the agricultural waste management chain. BIORESOURCE TECHNOLOGY 2020; 307:123171. [PMID: 32203867 DOI: 10.1016/j.biortech.2020.123171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/05/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Livestock waste is stored and used as soil fertilizer or directly as substrate for biogas production. Methane emissions from manure storages and ammonia inhibition of anaerobic digesters fed with manure, are well-known problems related to manure management. This study examines the effect of adding tannic acid with fluoride (TA-NaF) and lignosulfonic acid (LS) on methanogenic activity in batch reactors with ammonia inhibited maize silage digestate and in batch reactors with manure. Lignosulfonic acid counteracted urea induced ammonia inhibition of methanogenesis, whereas TA-NaF inhibited methanogenesis itself. Stable carbon isotope ratio analysis and methanogen community analysis suggested that TA-NaF affected acetoclastic methanogens the most. The combined findings suggest that TA-NaF could be used to reduce methane emissions from stored manure. Conversely, LS could be used as supplement in anaerobic digesters prone to urea induced ammonia inhibition.
Collapse
Affiliation(s)
- Frederik R Dalby
- Department of Engineering, Air Quality Engineering, Aarhus University, 8200 Aarhus C, Denmark
| | - Michael J Hansen
- Department of Engineering, Air Quality Engineering, Aarhus University, 8200 Aarhus C, Denmark
| | - Anders Feilberg
- Department of Engineering, Air Quality Engineering, Aarhus University, 8200 Aarhus C, Denmark
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
| | - Marcell Nikolausz
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany.
| |
Collapse
|