1
|
Singh J, Muller A. Ambient Hydrocarbon Detection with an Ultra-Low-Loss Cavity Raman Analyzer. Anal Chem 2023; 95:3703-3711. [PMID: 36744943 DOI: 10.1021/acs.analchem.2c04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of ambient outdoor trace hydrocarbons was investigated with a multipass Raman analyzer. It relies on a multimode blue laser diode receiving optical feedback from a retroreflecting multipass optical cavity, effectively creating an external cavity diode laser within which spontaneous Raman scattering enhancement occurs. When implemented with ultra-low-loss mirrors, a more than 20-fold increase in signal-to-background ratio was obtained, enabling proximity detection of trace motor vehicle exhaust gases such as H2, CO, NO, CH4, C2H2, C2H4, and C2H6. In a 10-min-long measurement at double atmospheric pressure, the limits of detection obtained were near or below 100 ppb for most analytes.
Collapse
Affiliation(s)
- J Singh
- Physics Department, University of South Florida, Tampa, Florida33620, United States
| | - A Muller
- Physics Department, University of South Florida, Tampa, Florida33620, United States
| |
Collapse
|
2
|
Wang X, Gronstal S, Lopez B, Jung H, Chen LWA, Wu G, Ho SSH, Chow JC, Watson JG, Yao Q, Yoon S. Evidence of non-tailpipe emission contributions to PM 2.5 and PM 10 near southern California highways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120691. [PMID: 36435278 DOI: 10.1016/j.envpol.2022.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Particulate Matter (PM) concentrations near highways are influenced by vehicle tailpipe and non-tailpipe emissions, other emission sources, and urban background aerosols. This study collected PM2.5 and PM10 filter samples near two southern California highways (I-5 and I-710) over two weeks in winter 2020. Samples were analyzed for chemical source markers. Mean PM2.5 and PM10 concentrations were approximately 10-15 and 30 μg/m3, respectively. Organic matter, mineral dust, and elemental carbon (EC) were the most abundant PM components. EC and polycyclic aromatic hydrocarbons at I-710 were 19-26% and 47% higher than those at the I-5 sites, respectively, likely due to a larger proportion of diesel vehicles. High correlations were found for elements with common sources, such as markers for brake wear (e.g., Fe, Ba, Cu, and Zr) and road dust (e.g., Al, Si, Ca, and Mn). Based on rubber abundances, the contributions of tire tread particles to PM2.5 and PM10 mass were approximately 8.0% at I-5 and 5.5% at I-710. Two different tire brands showed significantly different Si, Zn, carbon, and natural rubber abundances.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA.
| | - Steven Gronstal
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA
| | - Brenda Lopez
- University of California-Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
| | - Heejung Jung
- University of California-Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
| | - L-W Antony Chen
- University of Nevada, Las Vegas, 4505 S. Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Guoyuan Wu
- University of California-Riverside, 1084 Columbia Ave, Riverside, CA, 92507, USA
| | - Steven Sai Hang Ho
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA; Hong Kong Premium Services and Research Laboratory, Hong Kong, China
| | - Judith C Chow
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA
| | - John G Watson
- Desert Research Institute, 2215 Raggio Pkwy, Reno, NV, 89512, USA
| | - Qi Yao
- California Air Resources Board, 1001 I St, Sacramento, CA, 95814, USA
| | - Seungju Yoon
- California Air Resources Board, 1001 I St, Sacramento, CA, 95814, USA
| |
Collapse
|
3
|
Geng Y, Cao Y, Zhao Q, Li Y, Tian S. Potential hazards associated with interactions between diesel exhaust particulate matter and pulmonary surfactant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151031. [PMID: 34666082 DOI: 10.1016/j.scitotenv.2021.151031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Long term exposure to diesel exhaust particulate matter (DEPM) can induce numerous adverse health effects to the respiratory system. Understanding the interaction between DEPM and pulmonary surfactant (PS) can be an essential step toward preliminary evaluation of the impact of DEPM on pulmonary health. Herein, DEPM was explored for its interaction with 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine (DPPC), the major component of PS. The results indicated that the surface pressure-area (π-A) isotherms of DPPC monolayers shifted toward lower molecular areas and the compression modulus (CS-1) reduced in the presence of DEPM. Atomic force microscopy image showed that DEPM can disrupt the ultrastructure of DPPC monolayers along with the direction of lateral compression. In addition, DPPC can in turn condition the surface properties of DEPM, permitting its agglomeration in aqueous media, which was attributed to the adsorption of DEPM to DPPC. Furthermore, the particle-bound polycyclic aromatic hydrocarbons (PAHs) could be desorbed from DEPM by the solubilization of DPPC and it was positively correlated with the hydrophobicity of PAHs. These findings revealed the toxicity of DEPM-associated PAHs and the role of DPPC in facilitating the removal of the inhaled particles, which can provide a new insight into the potential hazards of airborne particles on lung health.
Collapse
Affiliation(s)
- Yingxue Geng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Civil and Hydraulic Engineering, Xichang University, Xichang, Sichuan 615013, China
| | - Yan Cao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| |
Collapse
|