1
|
Pogner CE, Antunes C, Apangu GP, Bruffaerts N, Celenk S, Cristofori A, González Roldán N, Grinn-Gofroń A, Lara B, Lika M, Magyar D, Martinez-Bracero M, Muggia L, Muyshondt B, O'Connor D, Pallavicini A, Marchã Penha MA, Pérez-Badia R, Ribeiro H, Rodrigues Costa A, Tischner Z, Xhetani M, Ambelas Skjøth C. Airborne DNA: State of the art - Established methods and missing pieces in the molecular genetic detection of airborne microorganisms, viruses and plant particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177439. [PMID: 39549753 DOI: 10.1016/j.scitotenv.2024.177439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Bioaerosol is composed of different particles, originating from organisms, or their fragments with different origin, shape, and size. Sampling, analysing, identification and describing this airborne diversity has been carried out for over 100 years, and more recently the use of molecular genetic tools has been implemented. However, up to now there are no established protocols or standards for detecting airborne diversity of bacteria, fungi, viruses, pollen, and plant particles. In this review we evaluated commonalities of methods used in molecular genetic based studies in the last 23 years, to give an overview of applicable methods as well as knowledge gaps in diversity assessment. Various sampling techniques show different levels of effectiveness in detecting airborne particles based on their DNA. The storage and processing of samples, as well as DNA processing, influences the outcome of sampling campaigns. Moreover, the decisions on barcode selection, method of analysis, reference database as well as negative and positive controls may severely impact the results obtained. To date, the chain of decisions, methodological biases and error propagation have hindered DNA based molecular sequencing from offering a holistic picture of the airborne biodiversity. Reviewing the available studies, revealed a great diversity in used methodology and many publications didn't state all used methods in detail, making comparisons with other studies difficult or impossible. To overcome these limitations and ensure genuine comparability across studies, it is crucial to standardize protocols. Publications need to include all necessary information to enable comparison among different studies and to evaluate how methodological choices can impacts the results. Besides standardization, implementing of automatic tools and combining of different analytical techniques, such as real-time evaluation combined with sampling and molecular genetic analysis, could assist in achieving the goal of accurately assessing the actual airborne biodiversity.
Collapse
Affiliation(s)
- C-E Pogner
- Unit Bioresources, Center of Health and Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| | - C Antunes
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - G P Apangu
- Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, Hertfordshire AL5 2JQ, UK
| | - N Bruffaerts
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - S Celenk
- Bursa Uludag University, Arts and Science Faculty, Biology Department, Görükle-Bursa, Turkey
| | - A Cristofori
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Via Mach 1, 38098 San Michele all'Adige, TN, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - N González Roldán
- Pollen Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 7B, 41390 Gothenburg, Sweden
| | - A Grinn-Gofroń
- Institute of Biology, University of Szczecin, Wąska 13 Street, 71-415 Szczecin, Poland
| | - B Lara
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - M Lika
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - D Magyar
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Martinez-Bracero
- Department of Botany, Ecology and Plant Physiology, Córdoba University, 14071 Córdoba, Spain
| | - L Muggia
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - B Muyshondt
- Mycology and Aerobiology, Sciensano, Rue J. Wytsmanstraat 14, 1050 Brussels, Belgium
| | - D O'Connor
- School of Chemical Sciences, Dublin City University, Dublin D09 V209, Ireland
| | - A Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgieri 7, 34127 Trieste, Italy
| | - M A Marchã Penha
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - R Pérez-Badia
- Institute of Environmental Sciences, University of Castilla-La Mancha, Avda Carlos III, s/n, 45071 Toledo, Spain
| | - H Ribeiro
- Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - A Rodrigues Costa
- Department of Medical and Health Sciences, School of Health and Human Development University of Évora and Earth Sciences Institute (ICT), Pole of the University of Évora, Rua Romão Ramalho, 59, 7000-671 Évora, Portugal
| | - Z Tischner
- National Center for Public Health and Pharmacy, Albert Flórián út 2-6, 1097 Budapest, Hungary
| | - M Xhetani
- Department of Biology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - C Ambelas Skjøth
- Department of Environmental Science, iCLIMATE, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| |
Collapse
|
2
|
Bredeck G, Dos S Souza EJ, Wigmann C, Fomba KW, Herrmann H, Schins RPF. The influence of long-range transported Saharan dust on the inflammatory potency of ambient PM 2.5 and PM 10. ENVIRONMENTAL RESEARCH 2024; 252:119008. [PMID: 38663670 DOI: 10.1016/j.envres.2024.119008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability. Moreover, whether long-range transported desert dust potentiates the hazardousness of local particulate matter (PM) is still unresolved. We aimed to assess the influence of long-range transported desert dust on the inflammatory potency of PM2.5 and PM10 collected in Cape Verde and to examine associated constituents. During a reference period and two Saharan dust events, 63 PM2.5 and PM10 samples were collected at four sampling stations. The content of water-soluble ions, elements, and organic and elemental carbon was measured in all samples and endotoxins in PM10 samples. The PM-induced release of inflammatory cytokines from differentiated THP-1 macrophages was evaluated. The association of interleukin (IL)-1β release with PM composition was assessed using principal component (PC) regressions. PM2.5 from both dust events and PM10 from one event caused higher IL-1β release than PM from the reference period. PC regressions indicated an inverse relation of IL-1β release with sea spray ions in both size fractions and organic and elemental carbon in PM2.5. The PC with the higher regression coefficient suggested that iron and manganese may contribute to PM2.5-induced IL-1β release. Only during the reference period, endotoxin content strongly differed between sampling stations and correlated with inflammatory potency. Our results demonstrate that long-range transported desert dust amplifies the hazardousness of local air pollution and suggest that, in PM2.5, iron and manganese may be important. Our data indicate that endotoxins are contained in local and long-range transported PM10 but only explain the variability in inflammatory potency of local PM10. The increasing inflammatory potency of respirable and inhalable PM from desert dust events warrants regulatory measures and risk mitigation strategies.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany
| | - Eduardo J Dos S Souza
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Claudia Wigmann
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Permoserstr. 15, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Auf'm Hennekamp 50, Germany.
| |
Collapse
|
3
|
Zhang Y, O'Loughlin EJ, Park SY, Kwon MJ. Effects of Fe(III) (hydr)oxide mineralogy on the development of microbial communities originating from soil, surface water, groundwater, and aerosols. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166993. [PMID: 37717756 DOI: 10.1016/j.scitotenv.2023.166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/09/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
Microbial Fe(III) reduction is a key component of the iron cycle in natural environments. However, the susceptibility of Fe(III) (hydr)oxides to microbial reduction varies depending on the mineral's crystallinity, and the type of Fe(III) (hydr)oxide in turn will affect the composition of the microbial community. We created microcosm reactors with microbial communities from four different sources (soil, surface water, groundwater, and aerosols), three Fe(III) (hydr)oxides (lepidocrocite, goethite, and hematite) as electron acceptors, and acetate as an electron donor to investigate the shaping effect of Fe(III) mineral type on the development of microbial communities. During a 10-month incubation, changes in microbial community composition, Fe(III) reduction, and acetate utilization were monitored. Overall, there was greater reduction of lepidocrocite than of goethite and hematite, and the development of microbial communities originating from the same source diverged when supplied with different Fe(III) (hydr)oxides. Furthermore, each Fe(III) mineral was associated with unique taxa that emerged from different sources. This study illustrates the taxonomic diversity of Fe(III)-reducing microbes from a broad range of natural environments.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Edward J O'Loughlin
- Biosciences Division, Argonne National Laboratory, Lemont, IL 60439, United States
| | - Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
4
|
Das S, McEwen A, Prospero J, Spalink D, Chellam S. Respirable Metals, Bacteria, and Fungi during a Saharan-Sahelian Dust Event in Houston, Texas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19942-19955. [PMID: 37943153 PMCID: PMC10862556 DOI: 10.1021/acs.est.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
Although airborne bacteria and fungi can impact human, animal, plant, and ecosystem health, very few studies have investigated the possible impact of their long-range transport in the context of more commonly measured aerosol species, especially those present in an urban environment. We report first-of-kind simultaneous measurements of the elemental and microbial composition of North American respirable airborne particulate matter concurrent with a Saharan-Sahelian dust episode. Comprehensive taxonomic and phylogenetic profiles of microbial communities obtained by 16S/18S/ITS rDNA sequencing identified hundreds of bacteria and fungi, including several cataloged in the World Health Organization's lists of global priority human pathogens along with numerous other animal and plant pathogens and (poly)extremophiles. While elemental analysis sensitively tracked long-range transported Saharan dust and its mixing with locally emitted aerosols, microbial diversity, phylogeny, composition, and abundance did not well correlate with the apportioned African dust mass. Bacterial/fungal diversity, phylogenetic signal, and community turnover were strongly correlated to apportioned sources (especially vehicular emissions and construction activities) and elemental composition (especially calcium). Bacterial communities were substantially more dissimilar from each other across sampling days than were fungal communities. Generalized dissimilarity modeling revealed that daily compositional turnover in both communities was linked to calcium concentrations and aerosols from local vehicles and Saharan dust. Because African dust is known to impact large areas in northern South America, the Caribbean Basin, and the southern United States, the microbiological impacts of such long-range transport should be assessed in these regions.
Collapse
Affiliation(s)
- Sourav Das
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Alyvia McEwen
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Joseph Prospero
- Rosenstiel
School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, United States
| | - Daniel Spalink
- Department
of Ecology and Conservation Biology, Texas
A&M University, College
Station, Texas 77843, United States
| | - Shankararaman Chellam
- Department
of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Bredeck G, Dobner J, Stahlmecke B, Fomba KW, Herrmann H, Rossi A, Schins RPF. Saharan dust induces NLRP3-dependent inflammatory cytokines in an alveolar air-liquid interface co-culture model. Part Fibre Toxicol 2023; 20:39. [PMID: 37864207 PMCID: PMC10588053 DOI: 10.1186/s12989-023-00550-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 μm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1β release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1β suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany.
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), 47229, Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| |
Collapse
|
6
|
Toyoda A, Shibata Y, Matsuo Y, Terada K, Sugimoto H, Higashi K, Mori H, Ikeuchi A, Ito M, Kurokawa K, Katahira S. Diversity and compositional differences of the airborne microbiome in a biophilic indoor environment. Sci Rep 2023; 13:8179. [PMID: 37210416 DOI: 10.1038/s41598-023-34928-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/10/2023] [Indexed: 05/22/2023] Open
Abstract
Biophilic design based on indoor planting plays an important role in human physical and mental well-being. To investigate and assess the effects of indoor planting on air quality, we sequenced 16S rRNA gene amplicons to compare the airborne bacterial microbiomes of three planting rooms before and after installing natural materials (plants, soil, water, etc.) with distinct biophilic attributes. Incorporation of indoor plantings significantly increased the taxonomic diversity of the airborne microbiome in each room, and we observed different microbiome compositions in each room. The proportional contribution of each bacterial source to the airborne microbiome in the indoor planting rooms was estimated by SourceTracker2. This analysis revealed that the proportion of airborne microbial sources (e.g., plants and soil) varied depending on the natural materials installed. Our results have important implications for indoor planting with biophilic design to control the indoor airborne microbiome.
Collapse
Affiliation(s)
- Akinobu Toyoda
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan
| | - Yusuke Shibata
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan
| | - Yuzy Matsuo
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan
| | - Kumi Terada
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan
| | - Hiroki Sugimoto
- Toyota Central R&D Labs, Inc., Nagakute, Aichi, 480-1192, Japan
| | - Koichi Higashi
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Hiroshi Mori
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Akinori Ikeuchi
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan
| | - Masakazu Ito
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan
| | - Ken Kurokawa
- Department of Informatics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Satoshi Katahira
- Frontier Research Center, Toyota Motor Corporation, Toyota, Aichi, 471-8572, Japan.
| |
Collapse
|
7
|
Qi J, Ji M, Wang W, Zhang Z, Liu K, Huang Z, Liu Y. Effect of Indian monsoon on the glacial airborne bacteria over the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154980. [PMID: 35378188 DOI: 10.1016/j.scitotenv.2022.154980] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The glacier of the Tibetan Plateau (TP) is influenced by the Indian monsoon and continental westerlies. Wind flow can carry a variety of bacteria and disperse across the TP. Once these bacteria are colonized to the glacier surface, they could affect the biogeochemical cycle of the glacial ecosystems. However, very few studies have focused on the relationships between these airborne bacteria and atmospheric circulation over glaciers of the TP. Here we studied the diversity, taxonomic composition, and community structure of airborne bacteria on six TP glaciers using 16S rRNA gene sequencing. The results revealed an increase in the airborne bacterial diversity over the glaciers under the effect of the Indian monsoon. Airborne bacteria were dominated by Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, while relative abundances of Bacteroidetes and Firmicutes were significantly higher under the influence of the Indian monsoon in the southern and central of the TP, respectively. Moreover, significantly different airborne bacterial community structures were observed over glaciers under the influence of the Indian monsoon, which could be explained by the increased community stochasticity. In addition, the Indian monsoon increases the diversity and relative abundance of potential pathogens, which includes the most notorious bacteria such as Pseudomonas fluorescens, Staphylococcus aureus, and Clostridium butyricum. Our results revealed for the first time that atmospheric circulation influences the composition of airborne bacteria over the glaciers on the TP, this may provide critical insights into the distinct microbial community structure and function in glaciers across the TP.
Collapse
Affiliation(s)
- Jing Qi
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Mukan Ji
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Wenqiang Wang
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; School of Life Sciences, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihao Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongwei Huang
- Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Vergadi E, Rouva G, Angeli M, Galanakis E. Infectious Diseases Associated with Desert Dust Outbreaks: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116907. [PMID: 35682493 PMCID: PMC9180817 DOI: 10.3390/ijerph19116907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
Background: Desert dust outbreaks and dust storms are the major source of particulate matter globally and pose a major threat to human health. We investigated the microorganisms transported with desert dust particles and evaluated their potential impact on human health. Methods: A systematic review of all reports on the association between non-anthropogenic desert dust pollution, dust microorganisms and human health is conducted. Results: In total, 51 articles were included in this review. The affected regions studied were Asia (32/51, 62.7%) followed by Europe (9/51, 17.6%), America (6/51, 11.8%), Africa (4/51, 7.8%) and Australia (1/51, 2.0%). The Sahara Desert was the most frequent source of dust, followed by Asian and American deserts. In 39/51 studies the dust-related microbiome was analyzed, while, in 12/51 reports, the association of desert dust with infectious disease outbreaks was examined. Pathogenic and opportunistic agents were isolated from dust in 24/39 (61.5%) and 29/39 (74.4%) of the studies, respectively. A significant association of dust events with infectious disease outbreaks was found in 10/12 (83.3%) reports. The infectious diseases that were mostly investigated with dust outbreaks were pneumonia, respiratory tract infections, COVID-19, pulmonary tuberculosis and coccidioidomycosis. Conclusions: Desert dust outbreaks are vehicles of a significant number of pathogenic or opportunistic microorganisms and limited data indicate an association between dust events and infectious disease outbreaks. Further research is required to strengthen the correlation between dust events and infectious diseases and subsequently guide preventive public health measures.
Collapse
|
9
|
Iakovides M, Tsiamis G, Tziaras T, Stathopoulou P, Nikolaki S, Iakovides G, Stephanou EG. Two-year systematic investigation reveals alterations induced on chemical and bacteriome profile of PM 2.5 by African dust incursions to the Mediterranean atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:151976. [PMID: 34843760 DOI: 10.1016/j.scitotenv.2021.151976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 atmospheric samples were regularly collected between January 2013 and March 2015 at a central location of Eastern Mediterranean (Island of Crete) during African dust events (DES) and periods of absence of such episodes as controls (CS). The elemental composition and microbiome DES and CS were thoroughly investigated. Fifty-six major and trace elements were determined by inductively coupled plasma-mass spectrometry. Relative mass abundances (RMA) of major crustal elements and lanthanoids were higher in DES than in CS. Conversely in CS, RMAs were higher for most anthropogenic transition metals. Lanthanum-to-other lanthanoids concentration ratios for DES approached the corresponding reference values for continental crust and several African dust source regions, while in CS they exceeded these values. USEPA's UNMIX receptor model, applied in all PM2.5 samples, established that African dust is the dominant contributing source (by 80%) followed by road dust/fuel oil emissions (17%) in the receptor area. Potential source contribution function (PSCF) identified dust hotspots in Tunisia, Libya and Egypt. The application of 16S rRNA gene amplicon sequencing revealed high variation of bacterial composition and diversity between DES and CS samples. Proteobacteria, Actinobacteria and Bacteroides were the most dominant in both DES and CS samples, representing ~88% of the total bacterial diversity. Cutibacterium, Tumebacillus and Sphingomonas dominated the CS samples, while Rhizobium and Brevundimonas were the most prevalent genera in DES. Mutual exclusion/co-occurrence network analysis indicated that Sphingomonas and Chryseobacterium exhibited the highest degrees of mutual exclusion in CS, while in DES the corresponding species were Brevundimonas, Delftia, Rubellimicrobium, Flavobacterium, Blastococcus, and Pseudarthrobacter. Some of these microorganisms are emerging global opportunistic pathogens and an increase in human exposure to them as a result of environmental changes, is inevitable.
Collapse
Affiliation(s)
- Minas Iakovides
- Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | | | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Sofia Nikolaki
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece
| | - Giannis Iakovides
- Department of Mathematics and Applied Mathematics, University of Crete, 71003 Heraklion, Greece
| | | |
Collapse
|
10
|
Gat D, Reicher N, Schechter S, Alayof M, Tarn MD, Wyld BV, Zimmermann R, Rudich Y. Size-Resolved Community Structure of Bacteria and Fungi Transported by Dust in the Middle East. Front Microbiol 2021; 12:744117. [PMID: 34858365 PMCID: PMC8631519 DOI: 10.3389/fmicb.2021.744117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
The atmosphere plays an important role in transporting microorganisms on a global scale, yet the processes affecting the composition of the airborne microbiome, the aerobiome, are not fully outlined. Here we present the community compositions of bacteria and fungi obtained by DNA amplicon-sequencing of aerosol samples collected in a size-resolved manner during nine consecutive days in central Israel. The campaign captured dust events originating from the Sahara and the Arabian deserts, as well as days without dust ("clear days"). We found that the source of the aerosol was the main variable contributing to the composition of both fungal and bacterial communities. Significant differences were also observed between communities representing particles of different sizes. We show evidence for the significant transport of bacteria as cell-aggregates and/or via bacterial attachment to particles during dust events. Our findings further point to the mixing of local and transported bacterial communities, observed mostly in particles smaller than 0.6 μm in diameter, representing bacterial single cells. Fungal communities showed the highest dependence on the source of the aerosols, along with significant daily variability, and without significant mixing between sources, possibly due to their larger aerodynamic size and shorter atmospheric residence times. These results, obtained under highly varied atmospheric conditions, provide significant assurances to previously raised hypotheses and could set the course for future studies on aerobiome composition.
Collapse
Affiliation(s)
- Daniella Gat
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
- Joint Mass Spectrometry Centre (JMSC), Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Naama Reicher
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai Schechter
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Matan Alayof
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mark D. Tarn
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Bethany V. Wyld
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre (JMSC), Comprehensive Molecular Analytics (CMA), Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Munich, Germany
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Rostock, Germany
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|