1
|
Liu Y, Wu P, Chen M, Wang T, Sun L, Lu B, Zhu N, Dang Z. Cerium(III)-induced structural transformation of hexagonal birnessite: Effect of mineral phase transition on arsenite transport and valence changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176537. [PMID: 39332731 DOI: 10.1016/j.scitotenv.2024.176537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
The widespread mining and application of rare earth elements (REEs) have led to their continuous accumulation in the environment, with increasing concentrations in soil. The interaction between the most abundant REEs, cerium (Ce), and the prevalent hexagonal birnessite (HB) in the environment is worth attention. HB is one of the most effective metal oxides for the oxidation of arsenite [As(III)] and subsequent adsorption, and thus for arsenic (As) immobilization. Therefore, in this study, we investigated the effect of the presence of Ce(III) ion on the HB formation process and the influence of generating minerals on the oxidation and removal of As(III). Research has found that the interfacial reactions of REEs in manganese (Mn) minerals not only affect their cycling but also alter the properties of the Mn minerals, thereby affecting the environmental fate of As. The results indicated that the presence of Ce ions affected the structure of HB during mineral synthesis and reduced the crystallinity of the conversion products. Their substitution for Mn(IV) in the lattice increased the specific surface area of minerals, reduced particle size, and produced more hydroxyl groups that were conducive to the immobilization of As(III). Meanwhile, Ce(III) was oxidized to Ce(IV) during the formation of Ce-bearing hexagonal birnessite (Ce-HB), and CeO2 nanoparticles were formed on the mineral surface and the removal rate of As(III) by Ce-HB was greatly improved. When the As concentration was lower than 6 mg·L-1, the removal effect of Ce-HB could reach the drinking water standard. However, the oxidation rate decreased due to the decrease in the proportion of Mn(IV). This study fundamentally reveals the behavior of HB coexisting with Ce in the migration and transformation of As(III) in the environment.
Collapse
Affiliation(s)
- Yingying Liu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China; Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou 510006, PR China.
| | - Meiqing Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Tianming Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Leiye Sun
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Bingxin Lu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China
| |
Collapse
|
2
|
Wen B, Zhou W, Liu P, Zhang Y, Jia X, Gao S, Zhang F, Zhou J, Huang J. Antimony isotopic fractionation induced by Sb(V) adsorption on β-MnO 2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172972. [PMID: 38735328 DOI: 10.1016/j.scitotenv.2024.172972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/10/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Antimony (Sb) isotopes hold immense promise for unraveling Sb biogeochemical cycling in environmental systems. Mn oxides help control the fate of Sb via adsorption reactions, yet the behavior and mechanisms of Sb isotopic fractionation on Mn oxides are poorly understood. In this study, we examine the Sb isotopic fractionation induced by adsorption on β-MnO2 in different experiments (kinetic, isothermal, effect of pH). We observe that adsorption on β-MnO2 surfaces preferentially enriches lighter Sb isotopes through equilibrium fractionation, with Δ123Sbaqueous-adsorbed of 0.55-0.79 ‰. Neither the pH or surface coverage affects the fractionation magnitude. The analysis of extended X-ray absorption fine structure (EXAFS) demonstrates that the enrichment of light isotope results from the adsorption of inner-sphere complexation on solids. Our finding of this study enhances our comprehension of the impact of β-MnO2 on Sb isotopic fractionation behavior and mechanism and facilitate the applicability of Sb isotopes as effective tracers to elucidate the origins and pathways of Sb contamination in environmental systems, as well as provide a new insight into forecasting the isotopic fractionation of other similar metals adsorbed by manganese oxides.
Collapse
Affiliation(s)
- Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, People's Republic of China
| | - Weiqing Zhou
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China
| | - Yuanzheng Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, People's Republic of China
| | - Xiaocen Jia
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China
| | - Shang Gao
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, People's Republic of China
| | - Fan Zhang
- Shanghai Chengtou Huanfu Private Equity Fund Management Co., Ltd., 200120 Shanghai, People's Republic of China
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, People's Republic of China; Key Laboratory of Mine Ecological Effects and System Restoration, Ministry of Natural Resources, 100081 Beijing, People's Republic of China.
| | - Jianbo Huang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, 210042 Nanjing, People's Republic of China.
| |
Collapse
|
3
|
Lee SY, Cho E, Suh BL, Choi JW, Lee S, Kim J, Lee C, Jung KW. Unveiling interfacial interaction between antimony oxyanions and boehmite nanorods: Spectroscopic evidence and density functional theory analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133902. [PMID: 38422738 DOI: 10.1016/j.jhazmat.2024.133902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
In natural environments, the fate and migratory behavior of metalloid contaminants such as antimony (Sb) significantly depend on the interfacial reactivity of mineral surfaces. Although boehmite (γ-AlOOH) is widely observed in (sub)surface environments, its underlying interaction mechanism with Sb oxyanions at the molecular scale remains unclear. Considering Sb-contaminated environmental conditions in this study, we prepared boehmite under weakly acidic conditions for use in the systematic investigation of interfacial interactions with Sb(III) and Sb(V). The as-synthesized boehmite showed a nanorod morphology and comprised four crystal facets in the following order: 48.4% (010), 27.1% (101), 15.0% (001), and 9.5% (100). The combined results of spectroscopic analyses and theoretical calculations revealed that Sb(III) formed hydrogen bonding outer-sphere complexation on the (100), (010), and (001) facets and that Sb(V) preferred to form bidentate inner-sphere complexation via mononuclear edge-sharing configuration on the (100), (001), and (101) facets and binuclear corner-sharing configuration on the (010) facet. These findings indicate that the facet-mediated thermodynamic stability of the surface complexation determines the interaction affinity toward the Sb species. This work is the first to document the contribution of boehmite to (sub)surface media, improving the ability to forecast the fate and behavior of Sb oxyanions at mineral-water interfaces.
Collapse
Affiliation(s)
- Seon Yong Lee
- Mineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Republic of Korea
| | - Eun Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Bong Lim Suh
- Mechatronics Research, Samsung Electronics co., Ltd, Gyeonggi-do 18448, Republic of Korea
| | - Jae-Woo Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Seunghak Lee
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea; Graduate School of Energy and Environment (KU-KIST Green School), Korea University, Seoul 02841, Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changha Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea.
| | - Kyung-Won Jung
- Center for Water Cycle Research, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
4
|
Shi M, Li Q, Wang Q, Yan X, Li B, Feng L, Wu C, Qiu R, Zhang H, Yang Z, Yang W, Liao Q, Chai L. A review on the transformation of birnessite in the environment: Implication for the stabilization of heavy metals. J Environ Sci (China) 2024; 139:496-515. [PMID: 38105072 DOI: 10.1016/j.jes.2023.06.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 12/19/2023]
Abstract
Birnessite is ubiquitous in the natural environment where heavy metals are retained and easily transformed. The surface properties and structure of birnessite change with the changes in external environmental conditions, which also affects the fate of heavy metals. Clarifying the effect and mechanism of the birnessite phase transition process on heavy metals is the key to taking effective measures to prevent and control heavy metal pollution. Therefore, the four transformation pathways of birnessite are summarized first in this review. Second, the relationship between transformation pathways and environmental conditions is proposed. These relevant environmental conditions include abiotic (e.g., co-existing ions, pH, oxygen pressure, temperature, electric field, light, aging, pressure) and biotic factors (e.g., microorganisms, biomolecules). The phase transformation is achieved by the key intermediate of Mn(III) through interlayer-condensation, folding, neutralization-disproportionation, and dissolution-recrystallization mechanisms. The AOS (average oxidation state) of Mn and interlayer spacing are closely correlated with the phase transformation of birnessite. Last but not least, the mechanisms of heavy metals immobilization in the transformation process of birnessite are summed up. They involve isomorphous substitution, redox, complexation, hydration/dehydration, etc. The transformation of birnessite and its implication on heavy metals will be helpful for understanding and predicting the behavior of heavy metals and the crucial phase of manganese oxides/hydroxides in natural and engineered environments.
Collapse
Affiliation(s)
- Miao Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Qingzhu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Qingwei Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China.
| | - Xuelei Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Bensheng Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linhai Feng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chao Wu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Rongrong Qiu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Hongkai Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Qi Liao
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; National Engineering Research Centre for Control and Treatment of Heavy Metal Pollution, Central South University, Changsha 410083, China; Water Pollution Control Technology Key Lab of Hunan Province, Changsha 410083, China
| |
Collapse
|
5
|
Peng L, Li D, Song H, Kuang X, Zeng Q, Ao H. The dissolution characteristics of cadmium containing birnessite produced from paddy crusts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169811. [PMID: 38211864 DOI: 10.1016/j.scitotenv.2023.169811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
The cadmium (Cd) accumulates in birnessite as it forms on the surface of paddy crusts (PC). The stability of Cd-containing birnessite is influenced by environmental factors, and destabilized birnessite releases dissolved Cd. We report the effects of pH, oxalic acid, and light on the dissolution of Cd-containing birnessite. We found that at pH 4.0, with light and 0.20 mol/L oxalic acid, the ratio of dissolved Cd and manganese (Mn) peaked after 24 h at 2978.0 μg/g and 326.8 mg/g, respectively. The three environmental factors affected the dissolution of Cd-containing birnessite in the following order: pH > oxalic acid > light. During dissolution process, Cd and Mn did not dissolve simultaneously, and the dissolved Cd/Mn ratio in the solution was significantly lower than that of the pristine mineral (33.5 × 10-3). Compared with Mn, Cd dissolution was inhibited by strong acidity (pH 4.0-5.0), and the dissolved Cd/Mn ratio was 5-10 × 10-3. Mild acidity (pH 6.0) was weakly inhibitory, with a Cd/Mn ratio of 6-15 × 10-3. In an alkaline (pH 8.0) oxalate environment, light illumination inhibited Cd dissolution, and the Cd/Mn ratio decreased over time due to the stability of the products formed by oxalate and carbonate, with Cd being more stable than those formed by Mn. Our findings would provide insights into the migration and transformation of PC-associated Cd in paddy fields.
Collapse
Affiliation(s)
- Liang Peng
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Dan Li
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Huijuan Song
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Xiaolin Kuang
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Qingru Zeng
- College of Environmental & Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
6
|
Li F, Yin H, Zhu T, Zhuang W. Understanding the role of manganese oxides in retaining harmful metals: Insights into oxidation and adsorption mechanisms at microstructure level. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:89-106. [PMID: 38445215 PMCID: PMC10912526 DOI: 10.1016/j.eehl.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/08/2024] [Indexed: 03/07/2024]
Abstract
The increasing intensity of human activities has led to a critical environmental challenge: widespread metal pollution. Manganese (Mn) oxides have emerged as potentially natural scavengers that perform crucial functions in the biogeochemical cycling of metal elements. Prior reviews have focused on the synthesis, characterization, and adsorption kinetics of Mn oxides, along with the transformation pathways of specific layered Mn oxides. This review conducts a meticulous investigation of the molecular-level adsorption and oxidation mechanisms of Mn oxides on hazardous metals, including adsorption patterns, coordination, adsorption sites, and redox processes. We also provide a comprehensive discussion of both internal factors (surface area, crystallinity, octahedral vacancy content in Mn oxides, and reactant concentration) and external factors (pH, presence of doped or pre-adsorbed metal ions) affecting the adsorption/oxidation of metals by Mn oxides. Additionally, we identify existing gaps in understanding these mechanisms and suggest avenues for future research. Our goal is to enhance knowledge of Mn oxides' regulatory roles in metal element translocation and transformation at the microstructure level, offering a framework for developing effective metal adsorbents and pollution control strategies.
Collapse
Affiliation(s)
- Feng Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, Ministry of Ecology and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianqiang Zhu
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| | - Wen Zhuang
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
- Institute of Marine Science and Technology, Shandong University, Qingdao 266237, China
- National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Institute of Eco-environmental Forensics, Shandong University, Qingdao 266237, China
| |
Collapse
|
7
|
Lv Y, Zhang C, Nan C, Fan Z, Huang S. Induced transformation of antimony trioxide by Mn(II) oxidation and their co-transformed mechanism. J Environ Sci (China) 2023; 129:69-78. [PMID: 36804243 DOI: 10.1016/j.jes.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 06/18/2023]
Abstract
Antimony (Sb) is a toxic and carcinogenic element that often enters soil in the form of antimony trioxide (Sb2O3) and coexists with manganese (Mn) in weakly alkaline conditions. Mn oxides such as birnessite have been found to promote the oxidative dissolution of Sb2O3, but few researches concerned the co-transformations of Sb2O3 and Mn(II) in environment. This study investigated the mutual effect of abiotic oxidation of Mn(II) and the coupled oxidative dissolution of Sb2O3. The influencing factors, such as Mn(II) concentrations, pH and oxygen were also discussed. Furthermore, their co-transformed mechanism was also explored based on the analysis of Mn(II) oxidation products with or without Sb2O3 using XRD, SEM and XPS. The results showed that the oxidative dissolution of Sb2O3 was enhanced under higher pH and higher Mn(II) loadings. With a lower Mn(II) concentration such as 0.01 mmol/L Mn(II) at pH 9.0, the improved dissolution of Sb2O3 was attributed to the generation of dissolved intermediate Mn(III) species with strong oxidation capacity. However, under higher Mn(II) concentrations, both amorphous Mn(III) oxides and intermediate Mn(III) species were responsible for promoting the oxidative dissolution of Sb2O3. Most released Sb (∼72%) was immobilized by Mn oxides and Sb(V) was dominant in the adsorbed and dissolved total Sb. Meanwhile, the presence of Sb2O3 not only inhibited the removal of Mn(II) by reducing Mn(III) to Mn(II) but also affected the final products of Mn oxides. For example, amorphous Mn oxides were formed instead of crystalline Mn(III) oxides, such as MnOOH. Furthermore, rhodochrosite (MnCO3) was formed with the high Mn(II)/Sb2O3 ratio, but without being observed in the low Mn(II)/Sb2O3 ratio. The results of study could help provide more understanding about the fate of Sb in the environment and the redox transformation of Mn.
Collapse
Affiliation(s)
- You Lv
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, Wuhan 430074, China.
| | - Chao Nan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Zenghui Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shuxin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Zhou Y, Tang Y, Liao C, Su M, Shih K. Recent advances toward structural incorporation for stabilizing heavy metal contaminants: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130977. [PMID: 36860053 DOI: 10.1016/j.jhazmat.2023.130977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution has resulted in serious environmental damage and raised significant public health concerns. One potential solution in terminal waste treatment is to structurally incorporate and immobilize heavy metals in some robust frameworks. Yet extant research offers a limited perspective on how metal incorporation behavior and stabilization mechanisms can effectively manage heavy metal-laden waste. This review sets forth detailed research on the feasibility of treatment strategies to incorporate heavy metals into structural frameworks; this paper also compares common methods and advanced characterization techniques for identifying metal stabilization mechanisms. Furthermore, this review analyses the typical hosting structures for heavy metal contaminants and metal incorporation behavior, highlighting the importance of structural features on metal speciation and immobilization efficiency. Lastly, this paper systematically summarizes key factors (i.e., intrinsic properties and external conditions) affecting metal incorporation behavior. Drawing on these impactful findings, the paper discusses future directions in the design of waste forms that efficiently, effectively treat heavy metal contaminants. By examining tailored composition-structure-property relationships in metal immobilization strategies, this review reveals possible solutions for crucial challenges in waste treatment and enhances the development of structural incorporation strategies for heavy metal immobilization in environmental applications.
Collapse
Affiliation(s)
- Ying Zhou
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, China; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China
| | - Yuanyuan Tang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Changzhong Liao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China.
| |
Collapse
|
9
|
Wei D, Liu J, Luo Z, Xie X. Insight into the reactions of antimonite with manganese oxides: Synergistic effects of Mn(III) and oxygen vacancies. WATER RESEARCH 2023; 232:119681. [PMID: 36736246 DOI: 10.1016/j.watres.2023.119681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Manganese oxides (MnxOy) are critical for determining the environmental behaviors and fate of antimonite (Sb(III)). However, little is known about the qualitative/quantitative connection between MnxOy structures and Sb(III) fate. Herein, the reactions of Sb(III) and six MnxOy with different structures were systematically investigated. The initial oxidation rates of Sb(III) (rinit) on six MnxOy decreased in the order of γ-MnO2>δ-MnO2>α-MnO2>γ-MnOOH>Mn3O4>β-MnO2 (pHinitial=7.0), from 0.32 ± 0.04 to 11.17 ± 1.61 mmol/min/mol-Mn. The amounts of antimony retained (i.e., the sum of Sb(III) and antimonate (Sb(V))) on these MnxOy followed the same trend as that of oxidation. Oxidation of Sb(III) released Mn(II) and created more sites for adsorption. Outwardly, MnxOy with higher reduction potential (E0) and specific surface area (SSA) favored faster Sb(III) oxidation. Inwardly, Mn(III) and oxygen vacancies (Ov) exhibited a synergistic effect on Sb(III) oxidation. Mn(III) can easier accept electron than Mn(IV) based on the change in Gibbs free energy calculation. Ov can adsorb free oxygen to form surface oxygen (Osur) which is much more reactive than lattice oxygen (Olatt). Moreover, Ov is in close proximity to Mn(III) in high-valent MnxOy which facilitated the reactions between Sb(III) and Mn(III) through the enhancement of Sb(III) adsorption and electron transfer. Ov in low-valent MnxOy is adjacent to Mn(II), thus it showed weaker enhancement than that in high-valent MnxOy. Part of δ-MnO2 and almost all Mn3O4 were converted to γ-MnOOH during their reaction with Sb(III), while the other four MnxOy were barely changed. The results obtained provide mechanistic insight into the reactions occurring within Sb(III) and MnxOy, which are helpful for better understanding and prediction of the fate of Sb(III) in Mn-rich environments.
Collapse
Affiliation(s)
- Dongning Wei
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Jing Liu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Zirui Luo
- Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, Aarhus C 8000, Denmark.
| | - Xiande Xie
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
10
|
Zhou W, Zhou A, Wen B, Liu P, Zhu Z, Finfrock Z, Zhou J. Antimony isotope fractionation during adsorption on aluminum oxides. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128317. [PMID: 35086037 DOI: 10.1016/j.jhazmat.2022.128317] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/30/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The environmental fate of antimony (Sb) is often strongly affected by adsorption, and the Sb isotope fractionation mechanism during adsorption has not been reported. Four batch experiments (kinetic, isothermal, effect of pH, and effect of coexisting anions) were conducted to evaluate the mechanism of Sb(V) adsorption to γ-Al2O3 and the fractionation of Sb isotopes. Extended X-ray absorption fine structure (EXAFS) analyses show Sb(V) adsorption on γ-Al2O3 occurs via outer-sphere surface complexation. The triple-layer model (TLM) effectively predicted the theoretical Sb adsorption amount under different pH conditions. The Sb isotope fractionation in the adsorption process can be divided into an initial kinetic stage (Rayleigh model, αadsorbed-aqueous = 0.99975 ± 0.00003) and subsequent isotopic equilibrium stage due to isotope exchange; however, no significant equilibrium isotope fractionation (Δ123Sbaqueous-adsorbed = ~0 ± 0.08‰) was evident by the end of the experiments. We propose the lack of significant equilibrium isotope fractionation in the effect of pH and isothermal experiments is due to Sb forming an outer-sphere complex on γ-Al2O3. This study reveals Sb equilibrium isotope fractionation does not occur during Sb(V) adsorption onto γ-Al2O3, providing a reference for the future study of Sb isotopes and furthering understanding of the Sb isotope fractionation mechanism.
Collapse
Affiliation(s)
- Weiqing Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Aiguo Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Bing Wen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, People's Republic of China
| | - Peng Liu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Zhenli Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Zou Finfrock
- CLS@APS sector 20, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA; Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Jianwei Zhou
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, People's Republic of China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, People's Republic of China.
| |
Collapse
|