1
|
Li S, Qin S, Zeng H, Chou W, Oudin A, Kanninen KM, Jalava P, Dong G, Zeng X. Adverse outcome pathway for the neurotoxicity of Per- and polyfluoroalkyl substances: A systematic review. ECO-ENVIRONMENT & HEALTH 2024; 3:476-493. [PMID: 39605965 PMCID: PMC11599988 DOI: 10.1016/j.eehl.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 11/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are endocrine disruptors with unambiguous neurotoxic effects. However, due to variability in experimental models, population characteristics, and molecular endpoints, the elucidation of mechanisms underlying PFAS-induced neurotoxicity remains incomplete. In this review, we utilized the adverse outcome pathway (AOP) framework, a comprehensive tool for evaluating toxicity across multiple biological levels (molecular, cellular, tissue and organ, individual, and population), to elucidate the mechanisms of neurotoxicity induced by PFAS. Based on 271 studies, the reactive oxygen species (ROS) generation emerged as the molecular initiating event 1 (MIE1). Subsequent key events (KEs) at the cellular level include oxidative stress, neuroinflammation, apoptosis, altered Ca2+ signal transduction, glutamate and dopamine signaling dyshomeostasis, and reduction of cholinergic and serotonin. These KEs culminate in synaptic dysfunction at organ and tissue levels. Further insights were offered into MIE2 and upstream KEs associated with altered thyroid hormone levels, contributing to synaptic dysfunction and hypomyelination at the organ and tissue levels. The inhibition of Na+/I- symporter (NIS) was identified as the MIE2, initiating a cascade of KEs at the cellular level, including altered thyroid hormone synthesis, thyroid hormone transporters, thyroid hormone metabolism, and binding with thyroid hormone receptors. All KEs ultimately result in adverse outcomes (AOs), including cognition and memory impairment, autism spectrum disorders, attention deficit hyperactivity disorders, and neuromotor development impairment. To our knowledge, this review represents the first comprehensive and systematic AOP analysis delineating the intricate mechanisms responsible for PFAS-induced neurotoxic effects, providing valuable insights for risk assessments and mitigation strategies against PFAS-related health hazards.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shuangjian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Huixian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weichun Chou
- Department of Environmental Sciences, College of Natural and Agricultural Sciences, University of California, Riverside, CA, United States
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M. Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guanghui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Qu R, Wang J, Li X, Zhang Y, Yin T, Yang P. Per- and Polyfluoroalkyl Substances (PFAS) Affect Female Reproductive Health: Epidemiological Evidence and Underlying Mechanisms. TOXICS 2024; 12:678. [PMID: 39330606 PMCID: PMC11435644 DOI: 10.3390/toxics12090678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
PFAS (per- and polyfluoroalkyl substances) have been extensively used across numerous industries and consumer goods. Due to their high persistence and mobility, they are ubiquitous in the environment. Exposure to PFAS occurs in people via multiple pathways such as dermal contact, water supply, air inhalation, and dietary intake. Even if some PFAS are being phased out because of their persistent presence in the environment and harmful impacts on human health, mixes of replacement and legacy PFAS will continue to pollute the ecosystem. Numerous toxicological investigations have revealed harmful effects of PFAS exposure on female reproductive health, e.g., polycystic ovaries syndrome, premature ovarian failure, endometriosis, reproductive system tumors, pregnancy complications, and adverse pregnancy outcomes. Despite extensive epidemiological studies on the reproductive toxicity of PFAS, research findings remain inconsistent, and the underlying mechanisms are not well understood. In this review, we give an in-depth description of the sources and pathways of PFAS, and then review the reproductive toxicity of PFAS and its possible mechanisms.
Collapse
Affiliation(s)
- Rui Qu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jingxuan Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaojie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tailang Yin
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- China Greater Bay Area Research Center of Environmental Health, School of Medicine, Jinan University, Guangzhou 510632, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, 510632, China
| |
Collapse
|
3
|
Pearce EN. Endocrine Disruptors and Thyroid Health. Endocr Pract 2024; 30:172-176. [PMID: 37956907 DOI: 10.1016/j.eprac.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
A wide variety of thyroidal endocrine-disrupting chemicals (EDCs) have been identified. Exposure to known thyroidal EDCs is ubiquitous, and many likely remain unidentified. The sources of exposure include contaminated drinking water, air pollution, pesticides and agricultural chemicals, flame retardants, cleaning supplies, personal care products, food additives and packaging materials, coatings and solvents, and medical products and equipment. EDCs can affect thyroid hormone synthesis, transport, metabolism, and action in a myriad of ways. Understanding the health effects of thyroidal EDCs has been challenging because individuals may have multiple concomitant EDC exposures and many potential EDCs are not yet well characterized. Because of the importance of thyroid hormone for brain development in early life, pregnant women and young infants are particularly vulnerable to the effects of environmental thyroid disruption. The thyroidal effects of some EDCs may be exacerbated in iodine-deficient individuals, those with thyroid autoimmunity, and those with mutations in deiodinase genes. Differential exposures to EDCs may exacerbate health disparities in disadvantaged groups. High-throughput in vitro assays and in silico methods and methods that can detect the effects of relevant EDC mixtures are needed. In addition, optimal methods for detecting the effects of thyroidal EDCs on neurodevelopment need to be developed. Common sense precautions can reduce some thyroidal EDC exposures; however, regulation of manufacturing and drinking water content will ultimately be needed to protect populations.
Collapse
Affiliation(s)
- Elizabeth N Pearce
- Section of Endocrinology, Diabetes, Nutrition, and Weight Management, Boston University Chobanian & Avedisian School of Medicine and Boston Medical Center, Boston, Massachusetts.
| |
Collapse
|
4
|
Hu L, Mei H, Cai X, Xiang F, Li N, Huang Z, Duan Z, Yang P, Xiao H. A co-twin control study of in utero exposure to poly- and perfluoroalkyl substances and associations with neonatal thyroid-stimulating hormone. ENVIRONMENTAL RESEARCH 2023; 239:117350. [PMID: 37821063 DOI: 10.1016/j.envres.2023.117350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Research quantifying associations between early-life exposure to poly- and perfluoroalkyl substances (PFAS) and neonatal thyroid hormone levels is limited and reports inconsistent results. This study aimed to examine the associations of in utero PFAS exposure with neonatal thyroid-stimulating hormone (TSH), and to verify whether genetic and familial factors contribute to these associations. Within Wuhan Twin Birth Cohort study, we included 148 mother-twin pairs recruited between March 2016 and January 2018. Maternal plasma PFAS concentrations were measured at three different trimesters and averaged. Additionally, we measured cord plasma PFAS concentrations for twin newborns and retrieved their TSH levels from the medical system. Multivariable linear regression, generalized estimation equation, and linear mixed models were used to examine the covariate-adjusted associations. For maternal PFAS analyses, a 2-fold increment of average maternal perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) concentrations was linked with a 15% (95% CI: 2.5%, 28%) and 14% (95% CI: 2.4%, 28%) increase in neonatal TSH, respectively. For twin newborns discordant for PFAS exposure, a 2-fold increment of cord plasma PFOA, PFDA, perfluoroundecanoic acid (PFUdA), and perfluorohexanesulfonic acid (PFHxS) concentrations was related to a 7.1% (95% CI: 0.31%, 14%), 12% (95% CI: 4.8%, 20%), 7.5% (95% CI: 0.30%, 15%), and 8.5% (95% CI: 3.0%, 14%) increase in TSH among twins as individuals, respectively. Although these associations were mainly observed between twin pairs, certain PFAS exposure might have an independent association with increased TSH. Our present study suggests that higher maternal and cord plasma PFAS concentrations are associated with increased neonatal TSH, and genetic and familial factors contribute to these associations.
Collapse
Affiliation(s)
- Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Xiaonan Cai
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Feiyan Xiang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Na Li
- Maternal Health Care Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhen Huang
- Department of Pathology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Zhengrong Duan
- Maternal Health Care Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
5
|
Xu Y, Yang L, Teng Y, Li J, Li N. Exploring the underlying molecular mechanism of tri(1,3-dichloropropyl) phosphate-induced neurodevelopmental toxicity via thyroid hormone disruption in zebrafish by multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106510. [PMID: 37003012 DOI: 10.1016/j.aquatox.2023.106510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) is widespread in the environment as a typical thyroid hormone-disrupting chemical. Here, we aimed to explore the toxicological mechanisms of the thyroid hormone-disrupting effects induced by TDCPP in zebrafish embryos/larvae using multi-omics analysis. The results showed that TDCPP (400 and 600 µg/L) induced phenotypic alteration and thyroid hormone imbalance in zebrafish larvae. It resulted in behavioral abnormalities during zebrafish embryonic development, suggesting that this chemical might exhibit neurodevelopmental toxicity. Transcriptomic and proteomic analysis provided consistent evidence at the gene and protein levels that neurodevelopmental disorders were significantly enhanced by TDCPP exposure (p < 0.05). Additionally, multi-omics data indicated that membrane thyroid hormone receptor (mTR)-mediated non-genomic pathways, including cell communication (ECM-receptor interactions, focal adhesion, etc.) and signal transduction pathways (MAPK signaling pathway, calcium signaling pathway, neuroactive ligand-receptor interaction pathway, etc.), were significantly disturbed (p < 0.05) and might contribute to the neurodevelopmental toxicity induced by TDCPP. Therefore, behavioral abnormalities and neurodevelopmental disorders might be important phenotypic characteristics of TDCPP-induced thyroid hormone disruption, and mTR-mediated non-genomic networks might participate in the disruptive effects of this chemical. This study provides new insights into the toxicological mechanisms of TDCPP-induced thyroid hormone disruption and proposes a theoretical basis for risk management of this chemical.
Collapse
Affiliation(s)
- Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
6
|
Deng Y, Han Y, Gao S, Dong W, Yu Y. The Physiological Functions and Polymorphisms of Type II Deiodinase. Endocrinol Metab (Seoul) 2023; 38:190-202. [PMID: 37150515 PMCID: PMC10164501 DOI: 10.3803/enm.2022.1599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 05/09/2023] Open
Abstract
Type II deiodinase (DIO2) is thought to provide triiodothyronine (T3) to the nucleus to meet intracellular needs by deiodinating the prohormone thyroxine. DIO2 is expressed widely in many tissues and plays an important role in a variety of physiological processes, such as controlling T3 content in developing tissues (e.g., bone, muscles, and skin) and the adult brain, and regulating adaptive thermogenesis in brown adipose tissue (BAT). However, the identification and cloning of DIO2 have been challenging. In recent years, several clinical investigations have focused on the Thr92Ala polymorphism, which is closely correlated with clinical syndromes such as type 2 diabetes, obesity, hypertension, and osteoarthritis. Thr92Ala-DIO2 was also found to be related to bone and neurodegenerative diseases and tumors. However, relatively few reviews have synthesized research on individual deiodinases, especially DIO2, in the past 5 years. This review summarizes current knowledge regarding the physiological functions of DIO2 in thyroid hormone signaling and adaptive thermogenesis in BAT and the brain, as well as the associations between Thr92Ala-DIO2 and bone and neurodegenerative diseases and tumors. This discussion is expected to provide insights into the physiological functions of DIO2 and the clinical syndromes associated with Thr92Ala-DIO2.
Collapse
Affiliation(s)
- Yan Deng
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Yi Han
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
| | - Sheng Gao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southwest Medical University, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Sarzo B, Abumallouh R, Marín N, Llop S, Beneito A, Lopez-Flores I, Ferrero N, Sakhi AK, Ballester F, Lopez-Espinosa MJ. Association between phenols and thyroid hormones: The role of iodothyronine deiodinase genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119926. [PMID: 35964788 DOI: 10.1016/j.envpol.2022.119926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Previous literature on prenatal phenol exposure and thyroid hormone (TH) alteration is conflicting, and the possible mechanisms of action involved remain unclear. We aimed to examine the association between prenatal phenol exposure and levels of maternal and neonatal THs, as well as the possible role of iodothyronine deiodinase (DIO) gene polymorphisms in this relation. We studied 387 Spanish mother-neonate pairs with measurements of maternal phenols, total triiodothyronine (TT3) and free thyroxine (FT4), maternal and neonatal thyroid-stimulating hormone (TSH), and maternal genotypes for single nucleotide polymorphisms in the DIO1(rs2235544) and DIO2(rs12885300) genes. We implemented multivariate linear and weighted quantile sum (WQS) regressions to examine the association between phenols and THs (including sex-stratified models for neonatal TSH) and investigated effect modification of genotypes in the maternal phenol-TH associations. In single exposure models, we found negative associations between maternal triclosan (TCS) and neonatal TSH (% change [95%CI]: -2.95 [-5.70, -0.11], per twofold phenol increase) - stronger for girls - and less clearly for maternal ethylparaben (EPB) and TSH (-2.27 [-4.55, 0.07]). In phenol mixture models, we found no association with THs. In the genetic interaction models, we found some evidence of effect modification of DIO gene polymorphisms with stronger negative associations between methylparaben (MPB), propylparaben (PPB), butylparaben (BPB) and TT3 as well as bisphenol A (BPA) and FT4 for DIO1(rs2235544)-CC. Stronger inverse associations for genotypes DIO2(rs12885300)-CC and DIO2(rs12885300)-CT and positive ones for DIO2(rs12885300)-TT were also reported for BPA and FT4. In conclusion, we found some evidence of an association between phenols and TSH during pregnancy and at birth in single exposure models, the latter being stronger for girls. Since no association was observed between maternal levels of phenols and TT3 or FT4, the possible role of the genetic background in these associations warrants further investigation.
Collapse
Affiliation(s)
- Blanca Sarzo
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Department of Microbiology and Ecology, University of Valencia, Valencia, Spain; School of Mathematics, University of Edinburgh, Edinburgh, UK
| | - Reem Abumallouh
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Natalia Marín
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | | | - Nerea Ferrero
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, Bizcaia, Spain
| | | | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Faculty of Nursing and Chiropody, University of Valencia, Valencia, Spain
| |
Collapse
|
8
|
Kobayashi S, Harada KH. Comment on "Maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-sectional Study": Predictability of Multiple Imputations for Large Amounts of Missing Data. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5276-5277. [PMID: 35258929 DOI: 10.1021/acs.est.1c08598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Sumitaka Kobayashi
- Center for Environmental and Health Sciences, Hokkaido University, North-12, West-7, Kita-ku, Sapporo 060-0812, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 6068501, Japan
| |
Collapse
|
9
|
Sarzo B, Ballesteros V, Iñiguez C, Manzano-Salgado CB, Casas M, Llop S, Murcia M, Guxens M, Vrijheid M, Santa Marina L, Schettgen T, Espada M, Irizar A, Fernandez-Jimenez N, Ballester F, Lopez-Espinosa MJ. Response to "Comment on Maternal Perfluoroalkyl Substances, Thyroid Hormones, and DIO Genes: A Spanish Cross-sectional Study: Predictability of Multiple Imputations for Large Amounts of Missing Data". ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5278-5282. [PMID: 35263543 DOI: 10.1021/acs.est.2c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Blanca Sarzo
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-Universitat de València, 46020, València, Spain
- Department of Microbiology and Ecology, University of Valencia, 46019, Burjasot, Spain
- School of Mathematics, University of Edinburgh, EH9 3FD, Edinburgh, U.K
| | - Virginia Ballesteros
- Andalusian Health and Environment Observatory (OSMAN), Andalusian School of Public Health, 18011, Granada, Spain
| | - Carmen Iñiguez
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-Universitat de València, 46020, València, Spain
- Department of Statistics and Operational Research, University of Valencia, 46100, Valencia, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | | | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- ISGlobal, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-Universitat de València, 46020, València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
| | - Mario Murcia
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-Universitat de València, 46020, València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Health Information Systems Analysis Service, Conselleria de Sanitat, Generalitat Valenciana, 46010, Valencia, Spain
| | - Mónica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- ISGlobal, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- ISGlobal, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Department of Health of the Basque Government, Subdirectorate of Public Health of Gipuzkoa, 20013, Donostia-San Sebastian, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, Donostia-San Sebastian, Spain
| | - Thomas Schettgen
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University, 52074, Aachen, Germany
| | - Mercedes Espada
- Clinical Chemistry Unit, Public Health Laboratory of Bilbao, 48160, Bilbao, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Biodonostia Health Research Institute, Environmental Epidemiology and Child Development Group, 20014, Donostia-San Sebastian, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV-EHU), 20018, San Sebastian, Spain
| | - Nora Fernandez-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Nursing, Biocruces-Bizkaia Health Research Institute and University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Ferran Ballester
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-Universitat de València, 46020, València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| | - Maria-Jose Lopez-Espinosa
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-University Jaume I-Universitat de València, 46020, València, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029, Madrid, Spain
- Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|