1
|
Luo Y, Liu G. Chemical mechanisms of hexachlorobutadiene reactions in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124893. [PMID: 39241950 DOI: 10.1016/j.envpol.2024.124893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Hexachloro-1,3-butadiene (HCBD) has received increasing attention because of its adverse effects on human health. Although HCBD is regulated under the Stockholm Convention, it is still widely detected in the environment. However, detailed reports on the chemical mechanisms of HCBD reactions in the environment are lacking. This review comprehensively summarizes HCBD's unintentional industrial sources and formation mechanisms, and chemical reactions and transformations in different media (gas, water, and biological phases). Photochemical reactions in the atmosphere can degrade and transform HCBD and potentially form other toxic compounds, such as phosgene. Aerobic pyrolysis of HCBD can generate complex byproducts. Further research is essential to fully understand the environmental behavior of HCBD.
Collapse
Affiliation(s)
- Yuyan Luo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, 310024, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Zhang C, Geng X, Zhu L, Xia D, Li X, Sun Y. Br-to-Cl Transformation Guided the Formation of Polyhalogenated Dibenzo- p-dioxins/Dibenzofurans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39096310 DOI: 10.1021/acs.est.4c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Polyhalogenated dibenzo-p-dioxins/dibenzofurans (PXDD/Fs) are commonly released into the environment as byproducts of combustion processes, accompanied by flue gases. Chlorinated (Cl) and brominated (Br) precursors play crucial roles in forming PXDD/Fs. However, the specific contributions of Cl-precursors and Br-precursors to PXDD/Fs formation have not been fully elucidated. Herein, we demonstrate that the formation of Br-precursors can increase the fraction of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) congeners substituted at specific positions, such as 1,2,3,4,6,7,8-HpCDD, OCDD, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. This is attributed to the electrophilic chlorination reaction of the Br-precursors, which includes the Br-to-Cl transformation pathway, following the principle of regioselectivity. The observed formation of polybrominated/chlorinated dibenzo-p-dioxins/benzofurans (PBCDD/Fs) from 1,2-dibromobenzene (1,2-DiBBz) as a Br precursor provides direct evidence supporting the proposed Br-to-Cl transformation. Quantum chemical calculations are employed to discuss the principle of regioselectivity in the Br-to-Cl transformation, clarifying the priority of the position for electrophilic chlorination. Additionally, the concentration of PCDD/Fs formed from 1,2-DiBBz is 1.6 μg/kg, comparable to that of polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) (2.4 μg/kg), highlighting the potential of brominated organic pollutants as precursors for PCDD/Fs formation. This study provides three potential pathways for PCDD/Fs formation from Br-precursors, establishing a theoretical foundation for elucidating the formation mechanism of PXDD/Fs in the coexistence of Cl and Br.
Collapse
Affiliation(s)
- Congcong Zhang
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xuan Geng
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Lingfeng Zhu
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Dan Xia
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
| | - Yifei Sun
- School of Energy and Power Engineering, Beihang University, Beijing 100191, PR China
- Research Center for Advanced Energy and Carbon Neutrality, Beihang University, Beijing 100191, PR China
- School of Environmental Science and Engineering, Hainan University, Haikou 570228, PR China
| |
Collapse
|
3
|
He Y, Liu W, Gao L, Ren Z, Hussain J, Jia T, Mao T, Deng J, Xu X, Yin F. Occurrence and Formation Mechanism of PCDD/Fs and SCCPs in Chlorinated Paraffin Products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:17522-17533. [PMID: 37905521 DOI: 10.1021/acs.est.3c06378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and short-chain chlorinated paraffins (SCCPs) can be formed during the production of chlorinated paraffins (CPs). Detection and accurate quantification of PCDD/Fs in CPs are challenging because of their matrix complexity. Therefore, the occurrence and formation mechanisms of PCDD/Fs from CPs have not been studied extensively in the past. In this study, 15 commercial samples including solid and liquid CPs were collected in 2022 from China. The average ΣSCCP concentrations detected in the solid and liquid CPs were 158 and 137 mg/g, respectively. The average International Toxic Equivalent (I-TEQ) values of 2,3,7,8-PCDD/F in solid and liquid CPs were 15.8 pg I-TEQ/g and 15.0 pg I-TEQ/g, respectively. The solid and liquid CPs had different predominant congener groups for SCCPs and PCDD/Fs. Possible formation routes for the generation of PCDD/Fs were analyzed by screening precursors in paraffin and laboratory-scale thermochemical experiments of CPs. The transformation between 2,3,7,8-PCDD/Fs and non-2,3,7,8-PCDD/Fs was recognized by calculating the successive chlorination preference. The first reported occurrence of PCDD/Fs in CP commercial products indicated that exposure to CPs and downstream products might be an assignable source of PCDD/F emission, which is of great significance to further explore the control factors of PCDD/Fs in the whole life cycle of CPs.
Collapse
Affiliation(s)
- Yunchen He
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Zhiyuan Ren
- Foreign Environmental Cooperation Center, Ministry of Ecology and Environment, Beijing 100035, China
| | - Javid Hussain
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
- Department of Environmental Sciences, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta 87100, Pakistan
| | - Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
| | - Xiaotian Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fei Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101314, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Liu X, Yang L, Liu G, Wang M, Yang Q, Zheng M. Occurrences and spatial distributions of dioxin-like polychlorinated biphenyls in chlorobenzene and chloroethylene manufacturing processes in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122064. [PMID: 37330188 DOI: 10.1016/j.envpol.2023.122064] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
As a group of pollutants listed in the Stockholm Convention, polychlorinated biphenyls (PCB) should be eliminated and their releases should be controlled. For this purpose, a complete PCB emission inventory is urgently required. Current unintentional releases of PCB were dominantly focused on waste incineration and non-ferrous metal production industries. The formation of PCB in chlorinated chemical manufacturing processes is poorly understood. In this study, occurrences and inventory of dioxin-like PCB (dl-PCB) in three typical chemical manufacturing processes, including chlorobenzene and chloroethylene production processes, were investigated. The bottom residues, which were high boiling point by-products after rectification tower, contained higher concentration of PCB than other stage samples in monochlorobenzene production and trichloroethylene production processes. The PCB concentrations were as high as 1.58 ng/mL and 152.87 ng/mL, respectively, which should be further concerned. The toxic equivalent quantities (TEQ) of dl-PCB in monochlorobenzene, trichloroethylene, and tetrachloroethylene products were 0.25 μg TEQ/t, 1.14 μg TEQ/t, and 5.23 μg TEQ/t, respectively. The mass concentration and TEQ of dl-PCB determined in this research can be used for the further development of dl-PCB emission inventory from these chemical manufacturing industries. In addition, temporal and spatial trends of PCB releases from typical chemical manufacturing processes from 1952 to 2018 in China were clarified. The releases increased rapidly in the latest two decades and presented an expansion tendency from the southeast coastal areas to northern and central areas. The continuing upward trend for the output and the high dl-PCB TEQ of chloroethylene indicated significant releases of PCB from chemical manufacturing processes and should receive more attention.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310000, China
| | - Minxiang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, 310000, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
5
|
Klimczak M, Liu G, Fernandes AR, Kilanowicz A, Falandysz J. An updated global overview of the manufacture and unintentional formation of polychlorinated naphthalenes (PCNs). JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131786. [PMID: 37302193 DOI: 10.1016/j.jhazmat.2023.131786] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/04/2023] [Indexed: 06/13/2023]
Abstract
This review updates information on the historical manufacture and unintentional production of polychlorinated naphthalenes (PCNs). The direct toxicity of PCNs as a result of occupational human exposure and through contaminated feed in livestock was recognised decades ago, making PCNs a precursor chemical for consideration in occupational medicine and occupational safety. This was confirmed by the listing of PCNs by the Stockholm Convention as a persistent organic pollutant in the environment, food, animals and humans. PCNs were manufactured globally between 1910 ∼ 1980, but reliable data on the volumes produced or national outputs are scarce. A total figure for global production would be useful for the purposes of inventory and control and it is clear that combustion related sources such as waste incineration, industrial metallurgy and use of chlorine are current major sources of PCNs to the environment. The upper bound estimate of total global production has been put at 400,000 metric tons but the amounts (at least, many 10 s of tonnes) that are currently emitted unintentionally every year through industrial combustion processes should also be inventoried along with estimates for emissions from bush and forest fires. This would however require considerable national effort, financing and co-operation from source operators. The historical (1910-1970 s) production and resulting emissions through diffusive/evaporative releases through usage, are still reflected in documented occurrence and patterns of PCNs in human milk in Europe and other locations worldwide. More recently, PCN occurrence in human milk from Chinese provinces has been linked to local unintentional emissions from thermal processes.
Collapse
Affiliation(s)
- Michał Klimczak
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland.
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 10-100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 12-100049, China.
| | - Awyn R Fernandes
- University of East Anglia, School of Environmental Sciences, Norwich NR4 7TJ, UK
| | - Anna Kilanowicz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland
| | - Jerzy Falandysz
- Medical University of Lodz, Faculty of Pharmacy, Department of Toxicology, Muszyńskiego 1, 90-151 Łódź, Poland.
| |
Collapse
|
6
|
Liu X, Liu G, Wang M, Wu J, Yang Q, Liu S, Wang M, Yang L, Zheng M. Formation and Inventory of Polychlorinated Dibenzo- p-dioxins and Dibenzofurans and Other Byproducts along Manufacturing Processes of Chlorobenzene and Chloroethylene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1646-1657. [PMID: 36681930 DOI: 10.1021/acs.est.2c07322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chlorinated organic chemicals are produced and used extensively worldwide, and their risks to the biology and environment are of increasing concern. However, chlorinated byproducts [e.g., polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs)] formed during the commercial manufacturing processes and present in organochlorine products are rarely reported. The knowledge on the occurrences and fate of unintentional persistent organic chemicals in the manufacturing of organochlorine chemical is necessary for accurate assessment of the risks of commercial chemicals and their production. Here, PCDD/Fs were tracked throughout chlorobenzene and chloroethylene production processes (from raw materials to final products) by target analysis. Other byproducts that can further transform into PCDD/Fs were also identified by performing non-target screening. As a result, the PCDD/F concentrations were mostly the highest in bottom residues, and the octachlorinated congeners were dominant. Alkali/water washing stages may cause the formation of oxygen-containing byproducts including PCDD/Fs and acyl-containing compounds, so more attention should be paid to these stages. PCDD/Fs were of 0.17 and 0.21-1.2 ng/mL in monochlorobenzene and chloroethylene products, respectively. Annual PCDD/F emissions (17 g toxic equivalent in 2018) during chlorobenzene and chloroethylene production were estimated using PCDD/F emission factors. The results can contribute to the improvement of PCDD/F inventories for the analyzed commercial chemicals.
Collapse
Affiliation(s)
- Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou310000, China
| | - Minxiang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Jiajia Wu
- Agilent Technologies (China), Inc., Beijing100102China
| | - Qiuting Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Mingxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou310000, China
| |
Collapse
|
7
|
Liu S, Liu G, Yang L, Liu X, Wang M, Qin L, Zheng M. Metal-Catalyzed Formation of Organic Pollutants Intermediated by Organic Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14550-14561. [PMID: 36168137 DOI: 10.1021/acs.est.2c05892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal compounds play important roles in the formation of organic pollutants during thermal-related processes. However, the metal-catalyzed predominant organic pollutants have not previously been characterized nor have any detailed catalytic mechanisms been clarified. Here, we preciously distinguished the multiple organic free radical intermediates on metal catalyst surfaces during the organic pollutant formation through laboratory and theoretical studies. Differences between the organic free radical intermediate species, concentrations, and formation mechanisms under the catalysis of different metal compounds were investigated. The results were verified mutually with the differed characteristics of organic pollutant products. CuO predominantly catalyzed the formation of highly chlorinated phenoxy radical intermediates and dioxins. High proportions of semiquinone radicals and oxygen-containing derivatives were found on ZnO surfaces. Differently, methyl-substituted phenoxy radicals and long-chain products formed on Al2O3 surfaces. The results will be instructive for the target emission control of priority organic pollutants during thermal-related processes rich in different metal compounds.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyun Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxuan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310000, China
| |
Collapse
|