1
|
Chen B, Chen J, Li G, An T. Research progress on secondary formation, photosensitive reaction mechanism and human health effects of chromophoric brown carbon. J Environ Sci (China) 2025; 151:310-330. [PMID: 39481942 DOI: 10.1016/j.jes.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 11/03/2024]
Abstract
Brown carbon (BrC) has attracted widespread attention because of its strong absorption of solar radiation in the ultraviolet-visible wavelength range, which causes adverse impacts on human health. Originally, BrC was a physically defined class of substances. However, current research has gradually shifted towards the identification of its chemical groups, because its light-absorbing capability, chemical properties and health effects mainly depend on the chemical composition of its chromophores. Therefore, this review mainly focuses on the chemical understanding of BrC based on chromophores, and the secondary formation mechanism of chromophores, photosensitized reactions, and human health effects of BrC were detailly summarized. Firstly, BrC chromophores are divided into five categories: nitrogen-heterocycles, nitrogen-chain, aromatic species, oligomers and sulfur-containing organic compounds. Different chromophore precursor species exhibit variations, and their formation mechanisms are also distinct. Secondly, BrC can trigger the production of secondary organic aerosol (SOA) precursors or cause SOA growth because BrC is an important component of light-absorbing particles formed during incomplete combustion of biomass and fossil fuels, potentially exerting adverse effects on human health. Finally, developing sufficiently separated methods for BrC and refining algorithms and machine learning can lead to a more effective understanding of the chemical composition of chromophores, thus enabling better evaluation of the atmospheric effects and health impacts of BrC. In all, this review provides new insights into the categories of BrC chromophores and new advance in secondary formation mechanisms, photosensitized reactions, and human health effects on the basis of chemical structures.
Collapse
Affiliation(s)
- Baihang Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Wang Y, Huang RJ, Zhong H, Wang T, Yang L, Yuan W, Xu W, An Z. Predictions of the Optical Properties of Brown Carbon Aerosol by Machine Learning with Typical Chromophores. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20588-20597. [PMID: 39510842 DOI: 10.1021/acs.est.4c09031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The linkages between BrC optical properties and chemical composition remain inadequately understood, with quantified chromophores explaining less than 25% of ambient aerosol light absorption. This study characterized 38 typical chromophores in aerosols collected in Xi'an, with light absorption contributions to BrC ranging from 1.6 ± 0.3 to 5.8 ± 2.6% at 365 nm. Based on these quantified chromophores, an interpretable machine learning model and the Shapley Additive Explanation (SHAP) method were employed to explore the relationships between BrC optical properties and chemical composition. The model attained high accuracy with Pearson correlation coefficients (r) exceeding 0.93 for the absorption coefficient (Absλ) and surpassing 0.57 for mass absorption efficiency (MAEλ) of BrC. It explains more than 80% of the variance in Abs and over 50% in MAE, significantly improving the understanding of BrC light absorption. Polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) with four and five rings exhibit significant positive effects on Absλ, suggesting that similar unidentified chromophores may also notably impact BrC optical characteristics. The model based on chromophore mass concentrations further simplifies studying BrC optical characteristics. This study advances understanding of the relationship between BrC composition and optical properties and guides the investigation of unrecognized chromophores.
Collapse
Affiliation(s)
- Ying Wang
- Interdisciplinary Research Center of Earth Science Frontier, State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Loess Science, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess Science, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haobin Zhong
- School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Ting Wang
- State Key Laboratory of Loess Science, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lu Yang
- State Key Laboratory of Loess Science, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Yuan
- State Key Laboratory of Loess Science, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Wei Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhisheng An
- Interdisciplinary Research Center of Earth Science Frontier, State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Loess Science, Center for Excellence in Quaternary Science and Global Change, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| |
Collapse
|
3
|
Fang Z, Lai A, Dongmei Cai, Chunlin Li, Carmieli R, Chen J, Wang X, Rudich Y. Secondary Organic Aerosol Generated from Biomass Burning Emitted Phenolic Compounds: Oxidative Potential, Reactive Oxygen Species, and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8194-8206. [PMID: 38683689 PMCID: PMC11097630 DOI: 10.1021/acs.est.3c09903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
Phenolic compounds are largely emitted from biomass burning (BB) and have a significant potential to form SOA (Phc-SOA). However, the toxicological properties of Phc-SOA remain unclear. In this study, phenol and guaiacol were chosen as two representative phenolic gases in BB plumes, and the toxicological properties of water-soluble components of their SOA generated under different photochemical ages and NOx levels were investigated. Phenolic compounds contribute greatly to the oxidative potential (OP) of biomass-burning SOA. OH-adducts of guaiacol (e.g., 2-methoxyhydroquinone) were identified as components of guaiacol SOA (GSOA) with high OP. The addition of nitro groups to 2,5-dimethyl-1,4-benzoquinone, a surrogate quinone compound in Phc-SOA, increased its OP. The toxicity of both phenol SOA (PSOA) and GSOA in vitro in human alveolar epithelial cells decreased with aging in terms of both cell death and cellular reactive oxygen species (ROS), possibly due to more ring-opening products with relatively low toxicity. The influence of NOx was consistent between cell death and cellular ROS for GSOA but not for PSOA, indicating that cellular ROS production does not necessarily represent all processes contributing to cell death caused by PSOA. Combining different acellular and cellular assays can provide a comprehensive understanding of aerosol toxicological properties.
Collapse
Affiliation(s)
- Zheng Fang
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Alexandra Lai
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Dongmei Cai
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chunlin Li
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
- College
of Environmental Science and Engineering, Tongji University, Shanghai 200072, China
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 76100, Israel
| | - Jianmin Chen
- Shanghai
Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP
3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Xinming Wang
- State
Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory
of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy
of Sciences, Guangzhou 510640, China
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Calderon-Arrieta D, Morales AC, Hettiyadura APS, Estock TM, Li C, Rudich Y, Laskin A. Enhanced Light Absorption and Elevated Viscosity of Atmospheric Brown Carbon through Evaporation of Volatile Components. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7493-7504. [PMID: 38637508 DOI: 10.1021/acs.est.3c10184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 μg/m3 to 2.3 μg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.
Collapse
Affiliation(s)
- Diego Calderon-Arrieta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Taylor M Estock
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Chunlin Li
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Cui Y, Chen K, Zhang H, Lin YH, Bahreini R. Chemical Composition and Optical Properties of Secondary Organic Aerosol from Photooxidation of Volatile Organic Compound Mixtures. ACS ES&T AIR 2024; 1:247-258. [PMID: 38633205 PMCID: PMC11019549 DOI: 10.1021/acsestair.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
The chemical and optical properties of secondary organic aerosols (SOA) have been widely studied through environmental chamber experiments, and some of the results have been parametrized in atmospheric models to help understand their radiative effects and climate influence. While most chamber studies investigate the aerosol formed from a single volatile organic compound (VOC), the potential interactions between reactive intermediates derived from VOC mixtures are not well understood. In this study, we investigated the SOA formed from pure and mixtures of anthropogenic (phenol and 1-methylnaphthalene) and/or biogenic (longifolene) VOCs using continuous-flow, high-NOx photooxidation chamber experiments to better mimic ambient conditions. SOA optical properties, including single scattering albedo (SSA), mass absorption coefficient (MAC), and refractive index (RI) at 375 nm, and chemical composition, including the formation of oxygenated organic compounds, organic-nitrogen compounds (including organonitrates and nitro-organics), and the molecular structure of the major chromophores, were explored. Additionally, the imaginary refractive index values of SOA in the multi-VOC system were predicted using a linear-combination assumption and compared with the measured values. When two VOCs were oxidized simultaneously, we found evidence for changes in SOA chemical composition compared to SOA formed from single-VOC systems, and this change led to nonlinear effects on SOA optical properties. The nonlinear effects were found to vary between different systems.
Collapse
Affiliation(s)
- Yumeng Cui
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Haofei Zhang
- Department
of Chemistry, University of California,
Riverside, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| | - Roya Bahreini
- Department
of Environmental Sciences, University of
California, Riverside, Riverside, California 92521, United States
| |
Collapse
|
6
|
Wu X, Yao X, Xie B, Wang P, Huo W, Zhu Y, Hou Q, Wu M, Wu Y, Zhang F. Unraveling the atmospheric oxidation mechanism and kinetics of naphthalene: Insights from theoretical exploration. CHEMOSPHERE 2024; 352:141356. [PMID: 38309603 DOI: 10.1016/j.chemosphere.2024.141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Naphthalene, the most abundant polycyclic aromatic hydrocarbon in the atmosphere, significantly influences OH consumption and secondary organic aerosol (SOA) formation. Naphthoquinone (NQ) is a significant contributor to ring-retaining SOA from naphthalene degradation, impacting the redox properties and toxicity of ambient particles. However, inconsistencies persist regarding concentrations of its isomers, 1,2-NQ and 1,4-NQ. In present work, our theoretical investigation into naphthalene's reaction with OH and subsequent oxygenation unveils their role in SOA formation. The reaction kinetics of initial OH and subsequent O2 oxidation was extensively studied using high-level quantum chemical methods (DLPNO-CCSD(T)/aug-ccpVQZ//M052x-D3/6-311++G(d,p)) combined with RRKM/master equation simulations. The reactions mainly proceed through electrophilic addition and abstraction from the aromatic ring. The total rate coefficient of naphthalene + OH at 300 K and 1 atm from our calculation (7.2 × 10-12 cm3 molecule-1 s-1) agrees well with previous measurements (∼1 × 10-11 cm3 molecule-1 s-1). The computed branching ratios facilitate accurate product yield determination. The largest yield of 1-hydroxynaphthalen-1-yl radical (add1) producing the major precursor of RO2 is computed to be 93.8 % in the ambient environment. Our calculated total rate coefficient (5.2 × 10-16 cm3 molecule-1 s-1) for add1 + O2 closely matches that of limited experimental data (8.0 × 10-16 cm3 molecule-1 s-1). Peroxy radicals (RO2) generated from add1 + O2 include 4-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-4OOadd-cis/trans, 66.0 %/17.5 %), 2-cis/trans-(1-hydroxynaphthalen-1-yl)-peroxy radical (add1-2OOadd-cis/trans, 10.3 %/6.3 %). Regarding the debated predominance of 1,4-NQ (corresponding to the parent RO2, i.e., add1-4OOadd-cis/trans) and 1,2-NQ (corresponding to the parent RO2, i.e., add1-2OOadd-cis/trans) in the atmosphere, our findings substantiate the dominance of 1,4-NQ. This study also indicates potential weakening of 1,4-NQ's dominance due to competition from decomposition reactions of add1-4OOadd-cis/trans and add1-2OOadd-cis/trans. Precise reaction kinetics data are essential for characterizing SOA transformation derived from naphthalene and assessing their climatic impacts within modeling frameworks.
Collapse
Affiliation(s)
- Xiaoqing Wu
- College of Information Engineering, China Jiliang University, Hangzhou, 310018, PR China; Science and Technology on Plasma Dymamics Lab, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xian, 710038, PR China.
| | - Xiaoxia Yao
- Science and Technology on Plasma Dymamics Lab, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xian, 710038, PR China.
| | - Binbin Xie
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, PR China.
| | - Pengfei Wang
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, PR China.
| | - Wanli Huo
- College of Information Engineering, China Jiliang University, Hangzhou, 310018, PR China.
| | - Yifei Zhu
- Institute of Aero-engine, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, PR China.
| | - Qifeng Hou
- National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou, 310051, PR China.
| | - Mengqi Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, PR China.
| | - Yun Wu
- Science and Technology on Plasma Dymamics Lab, Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xian, 710038, PR China.
| | - Feng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, PR China; Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, PR China.
| |
Collapse
|
7
|
Guo Z, Hu X, Sun W, Peng X, Fu Y, Liu K, Liu F, Meng H, Zhu Y, Zhang G, Wang X, Xue L, Wang J, Wang X, Peng P, Bi X. Mixing state and influence factors controlling diurnal variation of particulate nitrophenol compounds at a suburban area in northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123368. [PMID: 38246217 DOI: 10.1016/j.envpol.2024.123368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Nitrophenols have received extensive attention due to their strong light-absorbing ability in the near-ultraviolet-visible region, which could be influenced by the atmospheric processes of nitrophenols. However, our knowledge and understanding of the formation and evolution of nitrophenols are still in the nascent stages. In the present study, the mixing states of four mononitrophenol particles (i.e., nitrophenol, methynitrophenol, nitrocatechol, and methoxynitrophenol), and one nitropolycyclic aromatic hydrocarbon particles (i.e., nitronaphthol (NN)) were investigated using a single-particle aerosol mass spectrometer (SPAMS) in November 2019 in Qingdao, China. The results showed, for the first time, that mononitrophenols and NN exhibit different mixing states and diurnal variations. Four mononitrophenols were internally mixed well with each other, and with organic acids, nitrates, potassium, and naphthalene. The diurnal variation in the number fraction of mononitrophenols presented two peaks at 07:00 to 09:00 and 18:00 to 20:00, and a valley at noon. Atmospheric environmental conditions, including NO2, O3, relative humidity, and temperature, can significantly influence the diurnal variation of mononitrophenols. Multiple linear regression and random forest regression models revealed that the main factors controlling the diurnal variation of mononitrophenols were photochemical reactions during the day and aqueous-phase reactions during the night. Unlike mononitrophenols, about 62-83% of NN were internally mixed with [NH4]+ and [H(NO3)2]-, but not with organic acids and potassium. The diurnal variation of NN was also different from that of mononitrophenols, generally increased from 17:00 to 10:00 and then rapidly decreaed from 11:00 to 16:00. These results imply that NN may have sources and atmospheric processes that are different from mononitrophenols. We speculate that this is mostly controlled by photochemical reactions and mixing with [NH4]+, which may influence the diurnal variation of NN in the ambient particles; however, this requires further confirmation. These findings extend our current understanding of the atmospheric formation and evolution of nitrophenols.
Collapse
Affiliation(s)
- Ziyong Guo
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiaodong Hu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Xiaocong Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yuzhen Fu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Kun Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Fengxian Liu
- School of Economics and Management, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - He Meng
- Qingdao Eco-environment Monitoring Center of Shandong Province, Qingdao, 266003, PR China
| | - Yujiao Zhu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Jiancheng Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China.
| |
Collapse
|
8
|
Xu N, Hu M, Li X, Song K, Qiu Y, Sun HX, Wang Y, Zeng L, Li M, Wang H, Hu S, Zong T, Bai Y, Zhang Z, Li S, Shuai S, Chen Y, Guo S. Resolving Ultraviolet-Visible Spectra for Complex Dissolved Mixtures of Multitudinous Organic Matters in Aerosols. Anal Chem 2024; 96:1834-1842. [PMID: 38266381 DOI: 10.1021/acs.analchem.3c02700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Light-absorbing organic aerosols, referred to as brown carbon (BrC), play a vital role in the global climate and air quality. Due to the complexity of BrC chromophores, the identified absorbing substances in the ambient atmosphere are very limited. However, without comprehensive knowledge of the complex absorbing compounds in BrC, our understanding of its sources, formation, and evolution mechanisms remains superficial, leading to great uncertainty in climatic and atmospheric models. To address this gap, we developed a constrained non-negative matrix factorization (NMF) model to resolve the individual ultraviolet-visible spectrum for each substance in dissolved organic aerosols, with the power of ultrahigh-performance liquid chromatography-diode array detector-ultrahigh-resolution mass spectrometry (UHPLC-DAD-UHRMS). The resolved spectra were validated by selected standard substances and validation samples. Approximately 40,000 light-absorbing substances were recognized at the MS1 level. It turns out that BrC is composed of a vast number of substances rather than a few prominent chromophores in the urban atmosphere. Previous understanding of the absorbing feature of BrC based on a few identified compounds could be biased. Weak-absorbing substances missed previously play an important role in BrC absorption when they are integrated due to their overwhelming number. This model brings the property exploration of complex dissolved organic mixtures to a molecular level, laying a foundation for identifying potentially significant compositions and obtaining a comprehensive chemical picture.
Collapse
Affiliation(s)
- Nan Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xiao Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kai Song
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yanting Qiu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hao Xuan Sun
- Center for Data Science, Peking University, Beijing 100871, China
| | - Yujue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Linghan Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengren Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shuya Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Taomou Zong
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yao Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhou Zhang
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Shuangde Li
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Shijin Shuai
- State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
| | - Yunfa Chen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education (IJRC), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Li F, Tang S, Lv J, He A, Wang Y, Liu S, Cao H, Zhao L, Wang Y, Jiang G. Molecular-Scale Investigation on the Formation of Brown Carbon Aerosol via Iron-Phenolic Compound Reactions in the Dark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11173-11184. [PMID: 37462533 DOI: 10.1021/acs.est.3c04263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Brown carbon (BrC) is one of the most mysterious aerosol components responsible for global warming and air pollution. Iron (Fe)-induced catalytic oxidation of ubiquitous phenolic compounds has been considered as a potential pathway for BrC formation in the dark. However, the reaction mechanism and product composition are still poorly understood. Herein, 13 phenolic precursors were employed to react with Fe under environmentally relevant conditions. Using Fourier transform ion cyclotron resonance mass spectrometry, a total of 764 unique molecular formulas were identified, and over 85% of them can be found in atmospheric aerosols. In particular, products derived from precursors with catechol-, guaiacol-, and syringol-like-based structures can be distinguished by their optical and molecular characteristics, indicating the structure-dependent formation of BrC from phenolic precursors. Multiple pieces of evidence indicate that under acidic conditions, the contribution of either autoxidation or oxygen-induced free radical oxidation to BrC formation is extremely limited. Ligand-to-Fe charge transfer and subsequent phenoxy radical coupling reactions were the main mechanism for the formation of polymerization products with high molecular diversity, and the efficiency of BrC generation was linearly correlated with the ionization potential of phenolic precursors. The present study uncovered how chemically diverse BrC products were formed by the Fe-phenolic compound reactions at the molecular level and also provide a new paradigm for the study of the atmospheric aerosol formation mechanism.
Collapse
Affiliation(s)
- Feifei Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanshan Tang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anen He
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yarui Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Zhao R, Zhang Q, Xu X, Wang W, Zhao W, Zhang W, Zhang Y. Effect of photooxidation on size distribution, light absorption, and molecular compositions of smoke particles from rice straw combustion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119950. [PMID: 35998777 DOI: 10.1016/j.envpol.2022.119950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Organic aerosol (OA) emitted from biomass burning (BB) impacts air quality and global radiation balance. However, the comprehensive characterization of OA remains poorly understood because of the complex evolutionary behavior of OA in atmospheric processes. In this work, smoke particles were generated from rice straw combustion. The effect of OH radicals photooxidation on size distribution, light absorption, and molecular compositions of smoke particles was systematically investigated. The results showed that the median diameters of smoke particles increased by a factor of approximately 1.2 after photooxidation. In the particle compositions, although both non-polar fractions (n-hexane-soluble organic carbon, HSOC) and polar fractions (water-soluble organic carbon, WSOC) underwent photobleaching after aging, the photobleaching properties of HSOC (1.87-2.19) was always higher than that of WSOC (1.52-1.33). Besides, the light-absorbing properties of HSOC were higher than that of WSOC, showing a factor of approximately 1.75 times for mass absorption efficiency at 365 nm (MAE365). Consequently, the simple forcing efficiency (SFE) caused by absorption showed that HSOC has higher radiation effects than WSOC. After photooxidation, the concentration of 16 PAHs in HSOC fractions significantly decreased by 15.3%-72.5%. In WSOC fractions, the content of CHO, CHONS, and CHOS compounds decreased slightly, while the content of CHON compounds increased. Meantime, the variations in molecular properties supported the decrease in light absorption of WSOC fractions. These results reveal the aging behavior of smoke particles, then stress the importance of non-polar organic fractions in particles, providing new insights into understanding the atmospheric pollution caused by BB smoke particles.
Collapse
Affiliation(s)
- Ranran Zhao
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China; School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China; School of Emergency Management and Safety Engineering, Yancheng Institute of Technology, Yancheng, 224051, Jiangsu, China
| | - Qixing Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Xuezhe Xu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Wenjia Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, Anhui, China; University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yongming Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|