1
|
He K, Sun C, Yang S, Liu H, Fu H, Qu X. Peroxidase-like activity of widely-used commercial inorganic pigments induces oxidative stress and antibiotic degradation: Implications for health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 958:177979. [PMID: 39662395 DOI: 10.1016/j.scitotenv.2024.177979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/13/2024]
Abstract
Inorganic pigments, which often contain significant amounts of nanoparticles, are crucial chemicals for human life. They are produced in massive quantities and widely used in consumer products, food, and pharmaceuticals. Herein, we reported that a variety of commonly used commercial inorganic pigments possess peroxidase-like activity, catalyzing hydrogen peroxide (H2O2) decomposition into reactive oxygen species, primarily hydroxyl radical (OH) and superoxide radical anion (O2-). The catalytic activity of inorganic pigments exhibits saturation kinetics as described by the Michaelis-Menten model, with optimal pH and temperature conditions that can be found in the human body. The enzyme-mimicking activity is strongly correlated with the formation of OH (R2 = 0.98), indicating the radical-mediated reaction pathway. The peroxidase-like activity of inorganic pigments can induce significant oxidative stress at health-relevant H2O2 concentrations (3-30 μM), as demonstrated by the ascorbic acid assay. Additionally, the peroxidase-like activity of inorganic pigments is able to mediate the oxidation of tetracycline, with oxidation rate constants positively correlated with the pigments' peroxidase-like activity. The discovery of peroxidase-like activity of commercial inorganic pigments sheds light on the reported oxidative stress exerted by these pigments and has important implications for the health risk assessment of inorganic food and pharmaceutical colorants, as well as colored consumer products.
Collapse
Affiliation(s)
- Kexin He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Chenxi Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Shuxue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Huiting Liu
- School of Environmental and Chemical Engineering, Shenyang Ligong University, Liaoning 110159, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China.
| |
Collapse
|
2
|
Ying S, Liu Z, Hu Y, Peng R, Zhu X, Dong S, Yan D, Huang Y. Location-dependent occurrence and distribution of metal-based nanoparticles in bay environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134972. [PMID: 38908173 DOI: 10.1016/j.jhazmat.2024.134972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Metal-based nanoparticles (MNPs) are increasingly being released into the marine environment, posing potential environmental risks. However, factors governing the environmental occurrence and distribution of MNPs in bays still lack a comprehensive understanding. Herein, we collected seawater and sediment samples from two adjacent bays (Daya Bay and Honghai Bay, which have similar water qualities), and determined the particle concentrations and sizes of multi-element MNPs (Ti-, Cu-, Zn-, Ag-, Mn-, Pb- and Cr-based NPs) via single particle inductively coupled plasma-mass spectrometry (spICP-MS). The internal circulation in Daya Bay has resulted in an even distribution of MNPs' particle concentrations and sizes in both seawater and sediments, while the terrestrial discharge in Honghai Bay has led to a gradient-decreasing trend in MNPs' concentrations from nearshore to offshore. Moreover, the relatively high abundance of MNPs in Honghai Bay has contributed to 2.35-fold higher environmental risks than Daya Bay. Overall, this study has provided solid evidence on the critical but overlooked factors that have shaped the occurrence and distribution of MNPs, providing new insights for risk management and emission regulation.
Collapse
Affiliation(s)
- Siying Ying
- Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Ziyi Liu
- Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Yongrong Hu
- Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Rong Peng
- Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China
| | - Xiaoshan Zhu
- School of Ecology and Environment, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Shuofei Dong
- Agilent Technologies Co., Ltd (China), Beijing 100102, China
| | - Dong Yan
- Agilent Technologies Co., Ltd (China), Beijing 100102, China
| | - Yuxiong Huang
- Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Li J, Cui D, Yang Z, Ma J, Liu J, Yu Y, Huang X, Xiang P. Health risk assessment of heavy metal(loid)s in road dust via dermal exposure pathway from a low latitude plateau provincial capital city: The importance of toxicological verification. ENVIRONMENTAL RESEARCH 2024; 252:118890. [PMID: 38615791 DOI: 10.1016/j.envres.2024.118890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
The human health risk assessment through the dermal exposure of metal (loid)s in dust from low latitude and high geological background plateau cities was largely unknown. In this study, the road dust samples were harvested from a typical low-latitude plateau provincial capital city Kunming, Southwest China. The total concentration and dermal bioaccessibility of heavy metal (loid)s in road dust were determined, and their health risks as well as cytotoxicity on human skin keratinocytes were also assessed. The average concentrations of As (28.5 mg/kg), Cd (2.65 mg/kg), Mn (671 mg/kg), and Zn (511 mg/kg) exceeded the soil background values. Arsenic had the highest bioaccessibility after 2 h (3.79%), 8 h (4.24%), and 24 h (16.6%) extraction. The dermal pathway when bioaccessibility is considered has a higher hazard quotient than the conventional method using total metal(loid)s in the dust. In addition, toxicological verification suggested that the dust extracts suppressed the cell viability, increased the reactive oxygen species (ROS) level and DNA damage, and eventually activated the mitochondria-mediated apoptosis pathway, evidenced by the upregulation of Caspase-3/9, Bax, and Bak-1. Cadmium was positively correlated with the mRNA expression of Bax. Taken together, our data indicated that both dermal bioaccessibility and cytotoxicity should be considered for accurate human skin health risk assessment of heavy metal(loid)s in road dust, which may provide new insight for accurate human health risk assessment and environmental management.
Collapse
Affiliation(s)
- Jingya Li
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Daolei Cui
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Ziyue Yang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jiaoyang Ma
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China
| | - Jianjun Liu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Yingxin Yu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianfeng Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, School of Ecology and Environment, Southwest Forestry University, Kunming, 650224, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Chen L, Liu Z, Yang T, Zhao W, Yao Y, Liu P, Jia H. Photoaged Tire Wear Particles Leading to the Oxidative Damage on Earthworms ( Eisenia fetida) by Disrupting the Antioxidant Defense System: The Definitive Role of Environmental Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4500-4509. [PMID: 38415582 DOI: 10.1021/acs.est.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Tire wear particles (TWPs) have caused increasing concerns due to their detrimental effects on the soil ecosystem. However, the role of weathering in altering the toxicity of TWP to soil organisms is poorly understood. In this study, the toxicity of original and photoaged TWP was compared using earthworms (Eisenia fetida) as soil model organisms. The obtained results indicated that photoaging of TWP resulted in an increase of environmentally persistent free radicals (EPFRs) from 3.69 × 1017 to 5.20 × 1017 spin/g. Meanwhile, photoaged TWP induced the changes of toxic endpoint in E. fetide, i.e., the increase of the weight loss and death ratio from 0.0425 to 0.0756 g/worm and 23.3 to 50% compared to original TWP under a 10% concentration, respectively. Analyses of transcriptomics, antioxidant enzyme activity, and histopathology demonstrated that the enhanced toxicity was mainly due to oxidative damage, which was induced by disruption in the antioxidant defense system. Free-radical quenching and correlation analysis further suggested that the excessive production of ex vivo reactive oxygen species, induced by EPFRs, led to the exhaustion of the antioxidant defense system. Overall, this work provides new insights into the potential hazard of the weathered TWP in a soil environment and has significant implications for the recycling and proper disposal of spent tire particles.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Ze Liu
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Tianhuan Yang
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Weijie Zhao
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Youzhi Yao
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Peng Liu
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| | - Hanzhong Jia
- Key Laboratory of Low-Carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Nature Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, P. R. China
| |
Collapse
|
5
|
Wang B, Zheng Z, Chen L, Zhang W, He Y, Wu B, Ji R. Transcriptomics reveals key regulatory pathways and genes associated with skin diseases induced by face paint usage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164374. [PMID: 37236445 DOI: 10.1016/j.scitotenv.2023.164374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The use of face paint cosmetics can cause skin diseases in opera performers due to the presence of heavy metals and other toxic ingredients in the cosmetics. However, the underlying molecular mechanism for these diseases remains unknown. Here we examined the transcriptome gene profile of human skin keratinocytes exposed to artificial sweat extracts of face paints, and identified the key regulatory pathways and genes, using RNA sequencing technique. Bioinformatics analyses suggested that the face paint exposure induced the differentially expression of 1531 genes and enriched inflammation-relevant TNF and IL-17 signaling pathways after just 4 h of exposure. Inflammation-relevant genes CREB3L3, FOS, FOSB, JUN, TNF, and NFKBIA were identified as the potential regulatory genes, and SOCS3 capable to prevent inflammation-induced carcinogenesis as the hub-bottleneck gene. Long-term exposure (24 h) could exacerbate inflammation, accompanied by interference in cellular metabolism pathways, and the potential regulatory genes (ATP1A1, ATP1B1, ATP1B2, FXYD2, IL6, and TNF) and hub-bottleneck genes (JUNB and TNFAIP3) were all related to inflammation induction and other adverse responses. We proposed that the exposure to face paint might cause the inflammatory factors TNF and IL-17, which are encoded by the genes TNF and IL17, to bind to receptors and activate TNF and IL-17 signaling pathways, leading to the expression of cell proliferation factors (CREB and AP-1) and proinflammatory mediators including transcription factors (FOS, JUN, and JUNB), inflammatory factors (TNF-α and IL6), and intracellular signaling factors (TNFAIP3). This finally resulted in cell inflammation, apoptosis, and other skin diseases. TNF was identified as the key regulator and connector in all the enriched signaling pathways. Our study provides the first insights into the cytotoxicity mechanism of face paints to skin cells and highlights the need for stricter regulations in face paint safety.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaohao Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenhui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|