1
|
Song D, Huang T, Feng Y, Xie S, Wang C, Fang Q, Wang B, Zhang S, Ren J. Novel enhancement strategy for Hg adsorption in wastewater: Nonthermal plasma-mediated advanced modification of zero-valent iron-carbon galvanic cells with thiol functionalization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124108. [PMID: 39848181 DOI: 10.1016/j.jenvman.2025.124108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/25/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025]
Abstract
Mercury (Hg) pollution poses a critical threat to human health and the environment, necessitating urgent control measures. This study introduces a novel modification method for the common zero-valent iron-carbon (ZVI-AC) galvanic cells using a two-step process, nonthermal (NTP) irradiation followed by targeted functionalization, aiming to enhance Hg adsorption potential by adjusting the physicochemical properties of the cells. The NTP irradiated functionalized adsorbent demonstrated superior Hg adsorption performance across various concentrations and pH variations. Multichannel adsorption mechanisms were confirmed by fitting a total of 22 different adsorption isotherm models, indicating the coexistence of monolayer and multilayer adsorption processes. The NTP irradiation modifies the ZVI and AC, inducing nitrogen and oxygen doping on carbon-based surfaces and oxidizing ZVI to Fe(II)-Fe(III) species. The deepened oxidation of Fe in NTP-Fe-C, coupled with Hg2+ reduction to elemental Hg by raw Fe, contributed to Hg removal. NTP irradiation facilitated electron transfer between Fe and Hg, promoting oxidation of Fe and reduction of Hg2+ cations. The emergence of diverse Hg species further supported the multichannel adsorption/removal mechanism achieved by NTP-irradiated cells. This method offers a promising solution to Hg pollution and expands the application of the traditional iron-carbon galvanic cells in treating hazardous heavy metal wastes.
Collapse
Affiliation(s)
- Dongping Song
- School of Materials Engineering, Changshu Institute of Technology, 215500, China.
| | - Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, China.
| | - Yuxuan Feng
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shihong Xie
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Chenglong Wang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Qi Fang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Baijun Wang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Shuwen Zhang
- Nuclear Resources Engineering College, University of South China, 421001, China
| | - Jie Ren
- Interdisciplinary Research Center for Construction and Building Materials, Department of Materials Science and Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
2
|
Xu B, Lin Z, Li F, Tao T, Zhang G, Wang Y. Local O 2 concentrating boosts the electro-Fenton process for energy-efficient water remediation. Proc Natl Acad Sci U S A 2024; 121:e2317702121. [PMID: 38446850 PMCID: PMC10945831 DOI: 10.1073/pnas.2317702121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/20/2024] [Indexed: 03/08/2024] Open
Abstract
The electro-Fenton process is a state-of-the-art water treatment technology used to remove organic contaminants. However, the low O2 utilization efficiency (OUE, <1%) and high energy consumption remain the biggest obstacles to practical application. Here, we propose a local O2 concentrating (LOC) approach to increase the OUE by over 11-fold compared to the conventional simple O2 diffusion route. Due to the well-designed molecular structure, the LOC approach enables direct extraction of O2 from the bulk solution to the reaction interface; this eliminates the need to pump O2/air to overcome the sluggish O2 mass transfer and results in high Faradaic efficiencies (~50%) even under natural air diffusion conditions. Long-term operation of a flow-through pilot device indicated that the LOC approach saved more than 65% of the electric energy normally consumed in treating actual industrial wastewater, demonstrating the great potential of this system-level design to boost the electro-Fenton process for energy-efficient water remediation.
Collapse
Affiliation(s)
- Bincheng Xu
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Ze Lin
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Fengting Li
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Tao Tao
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse (Tongji University), College of Environmental Science and Engineering, Tongji University, Shanghai200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai200092, China
| |
Collapse
|
3
|
Zhou L, Liu Y, Shi H, Qing Y, Chen C, Shen L, Zhou M, Li B, Lin H. Molecular oxygen activation: Innovative techniques for environmental remediation. WATER RESEARCH 2024; 250:121075. [PMID: 38159543 DOI: 10.1016/j.watres.2023.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Molecular oxygen as a green, non-toxic, and inexpensive oxidant has displayed numerous advantages compared with other oxidants for more sustainable and environmentally benign pollutant degradation. Molecular oxygen activation stands as a groundbreaking approach in advanced oxidation processes, offering efficient environmental remediation with minimal environmental impact with the production of high-oxidation reactive oxygen species (ROS). The adaptability and energy efficiency of molecular oxygen activation significantly contribute to the progression of sustainable water remediation technologies. This review meticulously explores the principles and mechanisms of molecular oxygen activation, shedding light on the diverse ROS production pathways. Subsequently, this review comprehensively details contemporary activation approaches, including photocatalytic activation, electrocatalytic activation, piezoelectric activation, and photothermal activation, explicating their distinct activation mechanisms. Additionally, it delves into the promising applications of molecular oxygen activation in the degradation of water pollutants, primary air pollutants, and volatile organic compounds, providing an in-depth analysis of the associated degradation pathways and mechanisms. Moreover, this review also addresses the imminent challenges and emerging opportunities in environmental remediation. It is envisioned that this comprehensive analysis will spur ongoing exploration and innovation in the use of molecular oxygen activation for environmental remediation and beyond.
Collapse
Affiliation(s)
- Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao Shi
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Zhao M, Wang X, Wang S, Gao M. Hydroxyl radical induced Cr flocculation via redox reaction: The extending application of heterogeneous advanced oxidation processes on Cr removal. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131282. [PMID: 37023574 DOI: 10.1016/j.jhazmat.2023.131282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Flocculation is a traditional and effective method to remove Cr from wastewater, but the addition of flocculants inevitably leads to secondary pollution. In this study, Cr flocculation was induced using hydroxyl radical (•OH) (•OH flocculation) generated in an electro-Fenton-like system, achieving total Cr removal of 98.68% at initial pH = 8 within 40 min. The obtained Cr flocs showed significantly higher Cr content, lower sludge yield, and good settling properties compared to alkali precipitation and polyaluminum chloride flocculation. •OH flocculation behaved like a typical flocculant, introducing electrostatic neutralization and bridging. The mechanism proposed that •OH could overcome the steric hindrance of Cr(H2O)63+ and combine with it as an additional ligand. Then Cr(III) was proved to undergo multi-step oxidation to form Cr(IV) and Cr(V). After these oxidation reactions, •OH flocculation took precedence over Cr(VI) generation. As a result, Cr(VI) didn't accumulate in solution until •OH flocculation was completed. This work provided a clean and eco-friendly strategy for Cr flocculation instead of flocculants and extended the application of advanced oxidation processes (AOPs), which is expected to enrich existing strategies of AOPs towards Cr removal.
Collapse
Affiliation(s)
- Manshu Zhao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xinhua Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China
| | - Shuguang Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China
| | - Mingming Gao
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao 266237, China.
| |
Collapse
|
5
|
Li M, Bai L, Jiang S, Sillanpää M, Huang Y, Liu Y. Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131352. [PMID: 37027919 DOI: 10.1016/j.jhazmat.2023.131352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
The selective electrochemical reduction of oxygen (O2) via 3e- pathway for the production of hydroxyl radicals (HO) is a promising alternative to conventional electro-Fenton process. Here, we developed a nitrogen-doped CNT-encapsulated Ni nanoparticle electrocatalyst (Ni@N-CNT) with high O2 reduction selectivity for the generation of HO•via 3e- pathway. Exposed graphitized N on the CNT shell, and Ni nanoparticles encapsulated within the tip of the N-CNT, played a key role in the generation of H2O2 intermediate (*HOOH) via a 2e- oxygen reduction reaction. Meanwhile, those encapsulated Ni nanoparticles at the tip of the N-CNT facilitated the sequential HO• generation by directly decomposing the electrogenerated *H2O2 in a 1e- reduction reaction on the N-CNT shell without inducing Fenton reaction. Improved bisphenol A (BPA) degradation efficiency were observed when compared with conventional batch system (97.5% vs 66.4%). Trials using Ni@N-CNT in a flow-through configuration demonstrated a complete removal of BPA within 30 min (k = 0.12 min-1) with a limited energy consumption of 0.068 kW·h·g-1 TOC.
Collapse
Affiliation(s)
- Mohua Li
- College of Life Science, Taizhou University, Taizhou 318000, China; College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Liang Bai
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou 318000, China.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Yingping Huang
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang 443002, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| |
Collapse
|