1
|
Yang D, Zhou J, Wang S, Zhao L, Hassan RYA, Liu X, Deng Z, Wang J, Zhang D. Polyphenol-modified 3D Nanoassemblies: A novel antibacterial immunoglobulins loading platform for rapid detection of Salmonella typhimurium. Food Chem 2025; 472:142895. [PMID: 39826525 DOI: 10.1016/j.foodchem.2025.142895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/25/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Within the realm of lateral flow assay (LFIA), the conjugation efficiency between signal tracers and antibody constitutes a pivotal determinant for the sensitivity of the detection system. In this study, three-dimensional (3D) complex flower-like MoS2 self-assembled from 2D MoS2, and natural plant polyphenols "Tannic acid" were introduced for surface modification. This composite material exhibits distinct colorimetric signals, excellent monoclonal antibody coupling efficiency, and commendable photothermal properties.Finally, it was used as a signal tracer to establish a 12-min colorimetric/photothermal dual-mode LFIA platform (MoS2/TA-LFIA) for Salmonella Typhimurium detection. Compared to the AuNPs-based LFIA, the dual-mode detection platform limits are decreased by 20-fold (to 5 × 103 cfu/mL) and 100-fold (to 103 cfu/mL), respectively. Furthermore, the MoS2/TA-LFIA exhibits satisfactory recovery and stability when applied to milk and orange juice samples. Thus, this study provides a novel, efficient and reliable antibody loading strategy for LFIA detection of foodborne pathogens.
Collapse
Affiliation(s)
- Di Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China
| | - Jianhang Zhou
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China
| | - Lei Zhao
- College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China
| | - Rabeay Y A Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6Th October City, Giza 12578, Egypt
| | - Xin Liu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China
| | - Ziai Deng
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road Yangling, 712100, Shaanxi, China; College of Food Engineering, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
2
|
Liu X, Shu Y, Pan Y, Zeng G, Zhang M, Zhu C, Xu Y, Wan A, Wang M, Han Q, Liu B, Wang Z. Electrochemical destruction of PFAS at low oxidation potential enabled by CeO 2 electrodes utilizing adsorption and activation strategies. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:137043. [PMID: 39754874 DOI: 10.1016/j.jhazmat.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO2) electrodes enhanced with oxygen vacancy (Ov) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.37 V vs. SHE). Demonstrating high removal and defluorination efficiencies of perfluorooctanoic acid (PFOA) at 94.0 % and 73.0 %, respectively, our approach also proves effective in the environmental matrix. It minimizes the impacts of co-existing natural organic matter and chloride ions, crucial benefits of operating at lower oxidation potentials. The role of Ov in CeO2 is validated by both experimental results and density functional theory modeling, demonstrating that these sites can activate the C-F bond and substantially reduce the energy barriers for defluorination. Consequently, our CeO2-based method not only achieves defluorination efficiencies comparable to more energy-intensive techniques but does so while requiring less than 0.62 kWh/m3 per order. This positions our approach as a promising, cost-effective alternative for the remediation of PFAS-contaminated waters, emphasizing its relevance and effectiveness in environmental remediation scenarios.
Collapse
Affiliation(s)
- Xun Liu
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoshen Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chaoqun Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Youmei Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
3
|
Wang M, Han B, Zhao D, Hou S, Yin W, Gong Y. In situ remediation of mercury-contaminated groundwater through an in situ created reactive zone enabled by carboxymethyl cellulose stabilized FeS nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124902. [PMID: 39243935 DOI: 10.1016/j.envpol.2024.124902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Faced with worldwide mercury (Hg) contamination in groundwater, efficient in situ remediation technologies are urgently needed. Carboxymethyl cellulose (CMC) stabilized iron sulfide (CMC-FeS) nanoparticles have been found effective for immobilizing mercury in water and soil. Yet, the potential use of the nanoparticles for creating an in situ reactive zone (ISRZ) in porous geo-media has not been explored. This study assessed the transport and deliverability of CMC-FeS in sand media towards creating an ISRZ. The nanoparticles were deliverable through the saturated sand bed and the particle breakthrough/deposition profiles depended on the injection pore velocity, initial CMC-FeS concentration, and ionic strength. The transport data were well interpreted using an advection-dispersion transport model combined with the classical filtration theory. The resulting ISRZ effectively removed mercury from contaminated groundwater under typical subsurface conditions. While the operating conditions are yet to be optimized, the Hg breakthrough time can be affected by groundwater velocity, influent mercury concentration, dissolved organic matter, and co-existing metals/metalloids. The one-dimensional advection-dispersion equation well simulated the Hg breakthrough data. CMC-FeS-laden ISRZ effectively converted the more easily available Hg species to stable species. These findings reveal the potential of creating an ISRZ using CMC-FeS for in situ remediation of Hg contaminated soil and groundwater.
Collapse
Affiliation(s)
- Mengxia Wang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Bing Han
- Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Dongye Zhao
- Department of Civil & Environmental Engineering, Auburn University, Auburn, AL, 36849, USA; Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182, USA
| | - Sen Hou
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Weizhao Yin
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China
| | - Yanyan Gong
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
4
|
Lee TW, Chen C. Humic acid changes effect of naturally occurring oxidants on the environmental transformation of molybdenum disulfide nanosheets. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122190. [PMID: 39180818 DOI: 10.1016/j.jenvman.2024.122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/09/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
2H-phase molybdenum disulfide (2H-MoS2) has been considered to be a chemically stable two-dimensional (2D) nanomaterial. Nonetheless, the persistence of 2H-MoS2 in the presence of environmental redox-active matrices, such as naturally occurring oxidants (e.g., manganese dioxide (MnO2)) and natural organic matter (NOM), remains largely unknown. Herein, we examined the interplay between 2H-MoS2, MnO2 (a common natural oxidant), and NOM species (i.e., Aldrich humic acid (ALHA) and Suwannee River natural organic matter (SRNOM)). The results show that MnO2 accelerates the oxidative dissolution of 2H-MoS2, regardless of the presence of dissolved oxygen. The effect of NOM on the MnO2-induced fate of 2H-MoS2 was found to depend on its affinity for 2H-MoS2 and the functionality of NOM. ALHA preferentially adsorbed on hydrophobic 2H-MoS2 nanosheets due to the enrichment of reductive polycyclic aromatics and polyphenolic constituents. The preferential ALHA adsorption counteracted the MnO2-triggered oxidative transformation of 2H-MoS2, as revealed by the cathodic response of 2H-MoS2 (i.e., decreased the open circuit potential by 0.0338 V) and the emergence of reductive Mo‒C bonds at 228.8 and 231.9 eV upon the addition of ALHA. This work evaluated the persistence of 2H-MoS2, illustrating its susceptibility to decomposition by naturally occurring oxidants and the influence of NOM on it. These findings are crucial for revealing the fate and transport of MoS2 in aquatic environments and provide guidelines for related applications in natural or engineered systems for MoS2 and potentially other 2D materials.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
| | - Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City 402, Taiwan.
| |
Collapse
|
5
|
Wang M, Han Q, Zhang M, Liu X, Liu B, Wang Z. Efficient remediation of mercury-contaminated groundwater using MoS 2 nanosheets in an in situ reactive zone. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104347. [PMID: 38657473 DOI: 10.1016/j.jconhyd.2024.104347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Mercury contamination in groundwater is a serious global environmental issue that poses threats to human and environmental health. While MoS2 nanosheets have been proven promising in removing Hg from groundwater, an effective tool for in situ groundwater remediation is still needed. In this study, we investigated the transport and retention behavior of MoS2 nanosheets in sand column, and employed the formed MoS2in situ reactive zone (IRZ) for the remediation of Hg-contaminated groundwater. Breakthrough test revealed that high flow velocity and MoS2 initial concentration promoted the transport of MoS2 in sand column, while the addition of Ca ions increased the retention of MoS2. In Hg removal experiments, the groundwater flow velocity did not influence the Hg removal capacity due to the fast reaction rate between MoS2 and Hg. With an optimized MoS2 loading, MoS2IRZ effectively reduced the Hg effluent concentration down to <1 μg/L without apparent Hg remobilization. Additionally, flake-like MoS2 employed in this study showed much better Hg removal performance than flower-like and bulk MoS2, as well as other reported materials, with the Hg removal capacity a few to tens of times higher than those materials. These results suggest that MoS2 nanosheets have the potential to be an efficient IRZ reactive material for in situ remediation of Hg in contaminated groundwater.
Collapse
Affiliation(s)
- Mengxia Wang
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Xun Liu
- School of Environment, Harbin Institute of Technology, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
6
|
Lee TW, Chen C. Influence of Inorganic Anions on the Chemical Stability of Molybdenum Disulfide Nanosheets in the Aqueous Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2490-2501. [PMID: 38284181 PMCID: PMC10851429 DOI: 10.1021/acs.est.3c08278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
Chemical stability is closely associated with the transformations and bioavailabilities of engineered nanomaterials and is a key factor that governs broader and long-term application. With the growing utilization of molybdenum disulfide (MoS2) nanosheets in water treatment and purification processes, it is crucial to evaluate the stability of MoS2 nanosheets in aquatic environments. Nonetheless, the effects of anionic species on MoS2 remain largely unexplored. Herein, the stability of chemically exfoliated MoS2 nanosheets (ceMoS2) was assessed in the presence of inorganic anions. The results showed that the chemical stability of ceMoS2 was regulated by the nucleophilicities and the resultant charging effects of the anions in aquatic systems. The anions promote the dissolution of ceMoS2 by triggering a shift in the chemical potential of the ceMoS2 surface as a function of the anion nucleophilicity (i.e., charging effect). Fast charging with HCO3- and HPO42-/H2PO4- was validated by a phase transition from 1T to 2H and the emergence of MoV, and it promoted oxidative dissolution of the ceMoS2. Additionally, under sunlight, ceMoS2 dissolution was accelerated by NO3-. These findings provide insight into the ion-induced fate of ceMoS2 and the durability and risks of MoS2 nanosheets in environmental applications.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Department of Environmental
Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chiaying Chen
- Department of Environmental
Engineering, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|