1
|
Plata-Calzado C, Prieto AI, Cameán AM, Jos A. Analytical Methods for Anatoxin-a Determination: A Review. Toxins (Basel) 2024; 16:198. [PMID: 38668623 PMCID: PMC11053625 DOI: 10.3390/toxins16040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Anatoxin-a (ATX-a) is a potent neurotoxin produced by several species of cyanobacteria whose exposure can have direct consequences, including neurological disorders and death. The increasing prevalence of harmful cyanobacterial blooms makes the detection and reliable assessment of ATX-a levels essential to prevent the risk associated with public health. Therefore, the aim of this review is to compile the analytical methods developed to date for the detection and quantification of ATX-a levels alone and in mixtures with other cyanotoxins and their suitability. A classification of the analytical methods available is fundamental to make an appropriate choice according to the type of sample, the equipment available, and the required sensitivity and specificity for each specific purpose. The most widely used detection technique for the quantification of this toxin is liquid chromatography-tandem mass spectrometry (LC-MS/MS). The analytical methods reviewed herein focus mainly on water and cyanobacterial samples, so the need for validated analytical methods in more complex matrices (vegetables and fish) for the determination of ATX-a to assess dietary exposure to this toxin is evidenced. There is currently a trend towards the validation of multitoxin methods as opposed to single-ATX-a determination methods, which corresponds to the real situation of cyanotoxins' confluence in nature.
Collapse
Affiliation(s)
| | - Ana I. Prieto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González 2, 41012 Seville, Spain; (C.P.-C.); (A.M.C.); (A.J.)
| | | | | |
Collapse
|
2
|
Johnston LH, Huang Y, Bermarija TD, Rafuse C, Zamlynny L, Bruce MR, Graham C, Comeau AM, Valadez-Cano C, Lawrence JE, Beach DG, Jamieson RC. Proliferation and anatoxin production of benthic cyanobacteria associated with canine mortalities along a stream-lake continuum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170476. [PMID: 38290679 DOI: 10.1016/j.scitotenv.2024.170476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Proliferations of benthic cyanobacteria are increasingly in the public eye, with rising animal deaths associated with benthic rather than planktonic blooms. In early June 2021, two dogs died after consuming material on the shore of Shubenacadie Grand Lake, Nova Scotia. Preliminary investigations indicated anatoxins produced by benthic cyanobacterial mats were responsible for the deaths. In this study, we monitored the growth of a toxic benthic cyanobacterial species (Microcoleus sp.) along a stream-lake continuum where the canine poisonings occurred. We found that the species was able to proliferate in both lentic and lotic environments, but temporal growth dynamics and the predominant sub-species were influenced by habitat type, and differed with hydrodynamic setting, nutrient and sunlight availability. Toxin concentration was greatest in cyanobacterial mats growing in the oligotrophic lakeshore environment (maximum measured total anatoxins (ATXs) >20 mg·kg-1 wet weight). This corresponded with a shift in the profile of ATX analogues, which also indicated changing sub-species dominance along the stream-lake transition.
Collapse
Affiliation(s)
- Lindsay H Johnston
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada
| | - Yannan Huang
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada
| | - Tessa D Bermarija
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada
| | - Cheryl Rafuse
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS, Canada
| | - Lydia Zamlynny
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS, Canada
| | - Meghann R Bruce
- Canadian Rivers Institute, Department of Biology, University of New Brunswick, P.O. Box 4400, Fredericton, NB, Canada
| | - Catherine Graham
- Nova Scotia Department of Agriculture, Animal Health Laboratory, 65 River Rd, Bible Hill, NS, Canada
| | - André M Comeau
- Integrated Microbiome Resource (IMR), Dalhousie University, Halifax, Canada
| | - Cecilio Valadez-Cano
- Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Janice E Lawrence
- Biology Department, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Daniel G Beach
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada; Biotoxin Metrology, National Research Council Canada, 1411 Oxford St, Halifax, NS, Canada
| | - Rob C Jamieson
- Centre for Water Resources Studies, Department of Civil & Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, Canada.
| |
Collapse
|
3
|
Beach DG, Zamlynny L, MacArthur M, Miles CO. Liquid chromatography-high-resolution tandem mass spectrometry of anatoxins, including new conjugates and reduction products. Anal Bioanal Chem 2023; 415:5281-5296. [PMID: 37507466 PMCID: PMC10444699 DOI: 10.1007/s00216-023-04836-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Anatoxins (ATXs) are a potent class of cyanobacterial neurotoxins for which only a handful of structural analogues have been well characterized. Here, we report the development of an LC-HRMS/MS method for the comprehensive detection of ATXs. Application of this method to samples of benthic cyanobacterial mats and laboratory cultures showed detection of several new ATXs. Many of these result from nucleophilic addition to the olefinic bond of the α,β-unsaturated ketone functional group of anatoxin-a (ATX) and homoanatoxin-a (hATX), analogous to the conjugation chemistry of microcystins, which contain similar α,β-unsaturated amide functionality. Conjugates with glutathione, γ-glutamylcysteine, methanethiol, ammonia, methanol and water were detected, as well as putative C-10 alcohol derivatives. Structural confirmation was obtained by simple and selective analytical-scale semisynthetic reactions starting from available ATX standards. Methanol, water and ammonia conjugates were found to result primarily from sample preparation. Reduction products were found to result from enzymatic reactions occurring primarily after cell lysis in laboratory cultures of Kamptonema formosum and Cuspidothrix issatschenkoi. The relative contributions of the identified analogues to the anatoxin profiles in a set of 22 benthic-cyanobacterial-mat field samples were estimated, showing conjugates to account for up to 15% of total ATX peak area and 10-hydroxyanatoxins up to 38%. The developed methodology, new analogues and insight into the chemical and enzymatic reactivity of ATXs will enable a more comprehensive study of the class than possible previously.
Collapse
Affiliation(s)
- Daniel G Beach
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada.
| | - Lydia Zamlynny
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada
| | - Melanie MacArthur
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada
| | - Christopher O Miles
- Biotoxin Metrology, National Research Council Canada, 1411 Oxford St., Halifax, NS, Canada
| |
Collapse
|
4
|
Rankin‐Turner S, Sears P, Heaney LM. Applications of ambient ionization mass spectrometry in 2022: An annual review. ANALYTICAL SCIENCE ADVANCES 2023; 4:133-153. [PMID: 38716065 PMCID: PMC10989672 DOI: 10.1002/ansa.202300004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 06/28/2024]
Abstract
The development of ambient ionization mass spectrometry (AIMS) has transformed analytical science, providing the means of performing rapid analysis of samples in their native state, both in and out of the laboratory. The capacity to eliminate sample preparation and pre-MS separation techniques, leading to true real-time analysis, has led to AIMS naturally gaining a broad interest across the scientific community. Since the introduction of the first AIMS techniques in the mid-2000s, the field has exploded with dozens of novel ion sources, an array of intriguing applications, and an evident growing interest across diverse areas of study. As the field continues to surge forward each year, ambient ionization techniques are increasingly becoming commonplace in laboratories around the world. This annual review provides an overview of AIMS techniques and applications throughout 2022, with a specific focus on some of the major fields of research, including forensic science, disease diagnostics, pharmaceuticals and food sciences. New techniques and methods are introduced, demonstrating the unwavering drive of the analytical community to further advance this exciting field and push the boundaries of what analytical chemistry can achieve.
Collapse
Affiliation(s)
- Stephanie Rankin‐Turner
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Patrick Sears
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordUK
| | - Liam M Heaney
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| |
Collapse
|