1
|
Liu X, Fan Y, Ni M, Wang Z. The sorption of algal organic matter by extracellular polymeric substances: Trade-offs in disinfection byproduct formation influenced by divalent ions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 959:178239. [PMID: 39721540 DOI: 10.1016/j.scitotenv.2024.178239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Disinfection by-products (DBPs), formed from biofilm extracellular polymeric substances (EPS) and organic matter during regular disinfection practices in drinking water distribution systems, poses a potential threat to drinking water safety. However, the diverse DBP formations induced by the intertwined algal organic matter (AOM) and bacterial EPS remains elusive. In this study, we show substantial variations in EPS and DBP formation patterns driven by AOM biosorption with divalent ions (Ca2+ and Mg2+). Divalent ions in bulk water can significantly inhibit carbonaceous DBPs (C-DBPs) and nitrogenous DBPs (N-DBPs) formation. Mechanistically, divalent ions promote the complexation of negative charged groups and thus inhibit C-DBP formation, while the hindering chlorine substitution of hydrogen atoms on α‑carbon and amine groups reduces N-DBP formation. Conversely, Ca2+ and Mg2+ could facilitate biosorption processes that increased the yields of C-DBPs and N-DBPs. Both EPS and AOM provide halogenated reactive sites for DBP formation, exhibiting diverse aromatic substances and unsaturated (lignin and tannins) compounds. Our results highlight divalent ions acting as a fundamental driving force in DBP formation, suggesting the need for cautious monitoring of divalent ions in karst water.
Collapse
Affiliation(s)
- Xingyu Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Yichun Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China.
| |
Collapse
|
2
|
Wang P, Ye B, Nomura Y, Fujiwara T. Revisiting the chloramination of phenolic compounds: Formation of novel high-molecular-weight nitrogenous disinfection byproducts. WATER RESEARCH 2024; 266:122335. [PMID: 39213683 DOI: 10.1016/j.watres.2024.122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Disinfection is critical for ensuring water safety; however, the potential risks posed by disinfection byproducts (DBPs) have raised public concern. Previous studies have largely focused on low-molecular-weight DBPs with one or two carbon atoms, leaving the formation of high-molecular-weight DBPs (HMW DBPs, with more than two carbon atoms) less understood. This study explores the formation of HMW DBPs during the chloramination of phenolic compounds using a novel approach that combines high-resolution mass spectrometry with density functional theory (DFT) calculations. For the first time, we identified nearly 100 previously unreported HMW nitrogenous DBPs (N-DBPs), with nearly half of those being halogenated N-DBPs. These N-DBPs were tentatively identified as heterocyclic (e.g., pyrrole and pyridine analogs) and coupling heterocyclic N-DBPs. Through detailed structure analysis and DFT calculations, the key formation steps of heterocyclic N-DBPs (monochloramine-mediated ring-opening reactions of halobenzoquinones) and new bonding mechanisms (C-N, C-O, and C-C bonding) of the coupling heterocyclic N-DBPs were elucidated. The selective formation of these novel N-DBPs was significantly influenced by factors such as contact time, monochloramine dosage, pH, and bromide concentration. Our findings emphasize the occurrence of diverse HMW heterocyclic N-DBPs, which are likely toxicologically significant, underscoring the need for further research to evaluate and mitigate their potential health risks in water disinfection.
Collapse
Affiliation(s)
- Pin Wang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Bei Ye
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Youhei Nomura
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taku Fujiwara
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
3
|
Kralles ZT, Deherikar PK, Werner CA, Hu X, Kolodziej EP, Dai N. Halogenation of Anilines: Formation of Haloacetonitriles and Large-Molecule Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17497-17509. [PMID: 39297711 DOI: 10.1021/acs.est.4c05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Aniline-related structures are common in anthropogenic chemicals, such as pharmaceuticals and pesticides. Compared with the widely studied phenolic compounds, anilines have received far less assessment of their disinfection byproduct (DBP) formation potential, even though anilines and phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline (1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields with the highest yield observed for 2-ethylaniline (6.5%). The trihalomethane yields of anilines correlated with their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography-high-resolution mass spectrometry revealed several large-molecule DBPs, including chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage products. The product time profiles suggested that the reaction pathways include initial ring chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with the expected toxicity.
Collapse
Affiliation(s)
- Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Prashant K Deherikar
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Christian A Werner
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Ximin Hu
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| |
Collapse
|
4
|
Li X, Zhai H, Luo J, Hou R. A new concern raised from algal bloom: Organic chloramines in chlorination. WATER RESEARCH 2024; 260:121894. [PMID: 38880013 DOI: 10.1016/j.watres.2024.121894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Algal blooms have become a significant challenge in water treatment all over the world. In chlorination of drinking water, algal organic matter (AOM) leads to the formation of organic chloramines. The objectives of this review are to comprehensively summarize and discuss the up-to-date researches on AOM-derived organic chloramines and their chemical activities and toxicity, thereby drawing attention to the potentially chemical and hygienic risks of organic chloramines. The predominant algal species in water sources varied with location and season. AOM from cyanobacteria, green algae, and diatoms are composed of diverse composition. AOM-derived amino acids take a low portion of the precursors of organic chloramines. Both experimental kinetic data and quantum chemical calculation demonstrate the preferential formation of organic chloramines in the chlorination of model compounds (amino acids and peptides). Organic chloramines are persistent in water and can transform into dichloro- and trichloro-organic chloramines, unknown low-molecular-weight organic chloramines, and nitrogenous disinfection byproducts with the excess of free chlorine. The active chlorine (Cl+) in organic chloramines can lead to the formation of chlorinated phenolic compounds. Organic chloramines influence the generation and species of radicals and subsequent products in UV disinfection. Theoretical predictions and toxicological tests suggest that organic chloramines may cause oxidative or toxic pressure to bacteria or cells. Overall, organic chloramines, as one group of high-molecular-weight disinfection byproducts, have relatively long lifetimes, moderate chemical activities, and high hygienic risks to the public. Future perspectives of organic chloramines are suggested in terms of quantitative detection methods, the precursors from various predominant algal species, chemical activities of organic chloramines, and toxicity/impact.
Collapse
Affiliation(s)
- Xinyu Li
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Jiacheng Luo
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Ruixin Hou
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
5
|
Li J, Chen J, Li J. The ideal model for determination the formation potential of priority DBPs during chlorination of free amino acids. CHEMOSPHERE 2024; 359:142306. [PMID: 38734255 DOI: 10.1016/j.chemosphere.2024.142306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Amino acids (AAs) account for about 15-35% of dissolved organic nitrogen (DON), and are known as the important precursors of nitrogenous disinfection by-products (N-DBPs). Determining the formation potential (FP) of AAs to DBPs is used to reveal the key precursors of DBPs for further control, while the ideal method for N-DBPs FP of AAs during chlorination is not revealed. In this study, the ideal FP test models for five classes of priority DBPs during chlorination of four representative AAs (accounted for about 35% of total AAs) were analyzed. For haloaldehydes (HALs), haloketones (HKs), haloacetonitriles (HANs), haloacetamides (HAMs), and halonitromethanes (HNMs), their FPs during chlorination of four AAs were 0.1-13.0, 0.01-1.1, 0.1-104, not detectable (nd)-173, and nd-0.4 μg/mg, respectively. The FPs of priority DBPs had significant deviations between different FP test models and different tested AAs. For HALs, the model, whose chlorine dosage was determined by 15 × molar concentration of AAs [Cl (mM) = 15 × M](named: model II), was the ideal model. For HKs, model II was also the ideal FP test model for AAs with ≤3 carbons, while for AAs with 4 carbons, the model, whose chlorine dosage was determined by keeping the residual chlorine at 1 ± 0.2 mg/L after 24 h of reaction (named: model 4), was the ideal model. For HANs and HNMs, model 4 was the ideal FP test model for most of the studied AAs. The performance of HAMs during chlorination of amino acids was totally different from other P-DBPs, and model 3 was recommended to be the ideal model, in which chlorine dosage was determined by 3 × mass concentration of AAs [Cl (mg/L) = X × DOC]. This study is a reference that helps researchers select an ideal model for N-DBPs FP study of AAs.
Collapse
Affiliation(s)
- Junling Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jingsi Chen
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jiafu Li
- School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
6
|
Cao X, Mo Y, Zhang F, Zhou Y, Liu YD, Zhong R. Reaction sites of pyrimidine bases and nucleosides during chlorination: A computational study. CHEMOSPHERE 2024; 358:142189. [PMID: 38688350 DOI: 10.1016/j.chemosphere.2024.142189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
As important components of soluble microbial products in water, nucleobases have attracted much attention due to the high toxicity of their direct aromatic halogenated disinfection by-products (AH-DBPs) during chlorination. However, multiple halogenation sites of AH-DBPs pose challenges to identify them. In this study, reaction sites of pyrimidine bases and nucleosides during chlorination were investigated by quantum chemical computational method. The results indicate that the anion salt forms play key roles in chlorination of uracil, thymine, and their nucleosides, while neutral forms make predominant contributions to cytosine and cytidine. In view of both kinetics and thermodynamics, C5 is the most reactive site for uracil and thymine, N3/C5 and N3 for respective uridine and thymidine, N1/C5/N4 and N4 for respective cytosine and cytidine, whose estimated apparent rate constants kobs-est of ∼103, 103/102, 106/102/104, and 103 M-1 s-1, respectively, in consistent with the known experimental results. C6 in all pyrimidine compounds is hardly attacked by Cl+ in HOCl ascribed to its positive charge, but readily attacked by OH‾ in hydrolysis and the N1=C6 bond was found to possess the highest reactivity in hydrolysis among all double bonds. In addition, the structure-kinetic reactivity relationship study reveals a relatively strong correlation between lgkobs-est and APT charge in all pyrimidine compounds rather than FED2 (HOMO). The results are helpful to further understand the reactivity of various reaction sites in aromatic compounds during chlorination.
Collapse
Affiliation(s)
- Xiaomin Cao
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Yonghang Mo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Fuhao Zhang
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Yingying Zhou
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| | - Yong Dong Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
7
|
Li G, Tian C, Karanfil T, Liu C. Comparative formation of chlorinated and brominated disinfection byproducts from chlorination and bromination of amino acids. CHEMOSPHERE 2024; 349:140985. [PMID: 38104740 DOI: 10.1016/j.chemosphere.2023.140985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Amino acids are the main components of dissolved organic nitrogen in algal- and wastewater-impacted waters, which can react with chlorine to form toxic halogenated disinfection by-products (DBPs) in the disinfection process. In the presence of bromide, the reaction between amino acids and secondarily formed hypobromous acid can lead to the formation of brominated DBPs that are more toxic than chlorinated analogues. This study compares the formation of regulated and unregulated DBPs during chlorination and bromination of representative amino acids (AAs) (e.g., aspartic acid, asparagine, tryptophan, tyrosine, and histidine). In general, concentrations of brominated DBPs (trihalomethanes, haloacetonitriles, and haloacetamides, 24.9-5835.0 nM) during bromination were higher than their chlorinated analogues (9.3-3235.3 nM) during chlorination. This indicates the greater efficacy of bromine as a halogenating agent. However, the formation of chlorinated haloacetic acids during chlorination was higher than the corresponding brominated DBPs from bromination. It is likely that an oxidation pathway is required for the formation of haloacetic acids and chlorine is a stronger oxidant than bromine. Moreover, chlorine forms higher levels of haloacetaldehydes (74.4-1077.8 nM) from amino acids than bromine (1.0-480.2 nM) owing to the instability of brominated species. The DBP formation yields depend on the types of functional groups in the side chain of AAs. Eight intermediates resulting from chlorination/bromination of tyrosine were identified by triple quadrupole mass spectrometer, including N-chlorinated/brominated tyrosine, 3-chloro/bromo-tyrosine, and 3,5-dichloro/dibromo-tyrosine. These findings provided new insights into the DBP formation during the chlorination of algal- and wastewater-impacted waters with elevated bromide.
Collapse
Affiliation(s)
- Gengxian Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenhao Tian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC, 29625, USA
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|