1
|
Li X, Liu W, Ge Y, Shi R, Yin C, Liu J, Zhao Y, Wang Q, Wang J, Mo F, Zeb A, Yu M. Response of Ceratophyllum demersum L. and its epiphytic biofilms to 6PPD and 6PPD-Q exposure: Based on metabolomics and microbial community analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136420. [PMID: 39509872 DOI: 10.1016/j.jhazmat.2024.136420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The emerging contaminant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its ozone conversion product N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPD-Q) pose a threat to aquatic ecosystems. Aquatic animals and plants exhibit vigorous responses at very low ambient concentrations. However, studies of submerged macrophytes, key producers in aquatic ecosystems, are limited and the full extent of their toxic effects and feedback mechanisms is unknown. To investigate the phytotoxicity of 6PPD and 6PPD-Q, we modeled plant responses to abiotic stress using Ceratophyllum demersum L. (C. demersum) as a representative submerged plant. Our findings indicate that 6PPD and 6PPD-Q disrupt physiological and biochemical processes in C. demersum, encompassing growth inhibition, reduction in photosynthetic pigments, induction of oxidative damage, and metabolic alterations. Moreover, unfavorable modifications to biofilms induced were also discernible supported by confocal laser scanning microscopy (CLSM) images and microbial community profiling. More importantly, we found a robust correlation between differentially expressed metabolites (DEMs) and dominant genera, and 6PPD and 6PPD-Q significantly altered their correlation. Overall, our results imply that even though C. demersum is a resilient submerged macrophyte, the toxic effects of 6PPD and 6PPD-Q cannot be disregarded.
Collapse
Affiliation(s)
- Xiang Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Yichen Ge
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Yuexing Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Fan Mo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
2
|
Pandey C, Christensen A, Jensen MNPB, Rechnagel ER, Gram K, Roitsch T. Stimulation of Arabidopsis thaliana Seed Germination at Suboptimal Temperatures through Biopriming with Biofilm-Forming PGPR Pseudomonas putida KT2440. PLANTS (BASEL, SWITZERLAND) 2024; 13:2681. [PMID: 39409551 PMCID: PMC11479300 DOI: 10.3390/plants13192681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/21/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
This study investigated the germination response to temperature of seeds of nine Arabidopsis thaliana ecotypes. They are characterized by a similar temperature dependency of seed germination, and 10 °C and 29 °C were found to be suboptimal low and high temperatures for all nine ecotypes, even though they originated from regions with diverse climates. We tested the potential of four PGPR strains from the genera Pseudomonas and Bacillus to stimulate seed germination in the two ecotypes under these suboptimal conditions. Biopriming of seeds with only the biofilm-forming strain Pseudomonas putida KT2440 significantly increased the germination of Cape Verde Islands (Cvi-0) seeds at 10 °C. However, biopriming did not significantly improve the germination of seeds of the widely utilized ecotype Columbia 0 (Col-0) at any of the two tested temperatures. To functionally investigate the role of KT2440's biofilm formation in the stimulation of seed germination, we used mutants with compromised biofilm-forming abilities. These bacterial mutants had a reduced ability to stimulate the germination of Cvi-0 seeds compared to wild-type KT2440, highlighting the importance of biofilm formation in promoting germination. These findings highlight the potential of PGPR-based biopriming for enhancing seed germination at low temperatures.
Collapse
Affiliation(s)
- Chandana Pandey
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1172 Copenhagen, Denmark; (A.C.); (M.N.P.B.J.); (E.R.R.); (K.G.); (T.R.)
| | - Anna Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1172 Copenhagen, Denmark; (A.C.); (M.N.P.B.J.); (E.R.R.); (K.G.); (T.R.)
| | - Martin N. P. B. Jensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1172 Copenhagen, Denmark; (A.C.); (M.N.P.B.J.); (E.R.R.); (K.G.); (T.R.)
| | - Emilie Rose Rechnagel
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1172 Copenhagen, Denmark; (A.C.); (M.N.P.B.J.); (E.R.R.); (K.G.); (T.R.)
| | - Katja Gram
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1172 Copenhagen, Denmark; (A.C.); (M.N.P.B.J.); (E.R.R.); (K.G.); (T.R.)
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, 1172 Copenhagen, Denmark; (A.C.); (M.N.P.B.J.); (E.R.R.); (K.G.); (T.R.)
- Global Change Research Institute of the Czech Academy of Sciences, 60300 Brno, Czech Republic
| |
Collapse
|
3
|
Wang H, Hu C, Li Y, Shen Y, Guo J, Shi B, Alvarez PJJ, Yu P. Nano-sized polystyrene and magnetite collectively promote biofilm stability and resistance due to enhanced oxidative stress response. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134974. [PMID: 38905973 DOI: 10.1016/j.jhazmat.2024.134974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/25/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Despite the growing prevalence of nanoplastics in drinking water distribution systems, the collective influence of nanoplastics and background nanoparticles on biofilm formation and microbial risks remains largely unexplored. Here, we demonstrate that nano-sized polystyrene modified with carboxyl groups (nPS) and background magnetite (nFe3O4) nanoparticles at environmentally relevant concentrations can collectively stimulate biofilm formation and prompt antibiotic resistance. Combined exposure of nPS and nFe3O4 by P. aeruginosa biofilm cells stimulated intracellular reactive oxidative species (ROS) production more significantly compared with individual exposure. The resultant upregulation of quorum sensing (QS) and c-di-GMP signaling pathways enhanced the biosynthesis of polysaccharides by 50 %- 66 % and increased biofilm biomass by 36 %- 40 % relative to unexposed control. Consistently, biofilm mechanical stability (measured as Young's modulus) increased by 7.2-9.1 folds, and chemical stress resistance (measured with chlorine disinfection) increased by 1.4-2.0 folds. For P. aeruginosa, the minimal inhibitory concentration of different antibiotics also increased by 1.1-2.5 folds after combined exposure. Moreover, at a microbial community-wide level, metagenomic analysis revealed that the combined exposure enhanced the multi-species biofilm's resistance to chlorine, enriched the opportunistic pathogenic bacteria, and promoted their virulence and antibiotic resistance. Overall, the enhanced formation of biofilms (that may harbor opportunistic pathogens) by nanoplastics and background nanoparticles is an overlooked phenomenon, which may jeopardize the microbial safety of drinking water distribution systems.
Collapse
Affiliation(s)
- Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chisheng Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun Shen
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, USA
| | - Pingfeng Yu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Antenozio ML, Giannelli G, Fragni R, Baragaño D, Brunetti P, Visioli G, Cardarelli M. Enhanced Growth and Contrasting Effects on Arsenic Phytoextraction in Pteris vittata through Rhizosphere Bacterial Inoculations. PLANTS (BASEL, SWITZERLAND) 2024; 13:2030. [PMID: 39124148 PMCID: PMC11314128 DOI: 10.3390/plants13152030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
This greenhouse study evaluated the effects of soil enrichment with Pteris vittata rhizosphere bacteria on the growth and accumulation of arsenic in P. vittata grown on a naturally As-rich soil. Inoculations were performed with a consortium of six bacteria resistant to 100 mM arsenate and effects were compared to those obtained on the sterilized soil. Selected bacteria from the consortium were also utilized individually: PVr_9 homologous to Agrobacterium radiobacter that produces IAA and siderophores and shows ACC deaminase activity, PVr_15 homologous to Acinetobacter schindleri that contains the arsenate reductase gene, and PVr_5 homologous to Paenarthrobacter ureafaciens that possesses all traits from both PVr_9 and PVr_15. Frond and root biomass significantly increased in ferns inoculated with the consortium only on non-sterilized soil. A greater increase was obtained with PVr_9 alone, while only an increased root length was found in those inoculated with either PVr_5 or PVr_15. Arsenic content significantly decreased only in ferns inoculated with PVr_9 while it increased in those inoculated with PVr_5 and PVr_15. In conclusion, inoculations with the consortium and PVr_9 alone increase plant biomass, but no increase in As phytoextraction occurs with the consortium and even a reduction is seen with PVr_9 alone. Conversely, inoculations with PVr_5 and PVr_15 have the capacity of increasing As phytoextraction.
Collapse
Affiliation(s)
- Maria Luisa Antenozio
- IBPM-CNR c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Roma, Italy; (M.L.A.); (M.C.)
| | - Gianluigi Giannelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
| | - Rosaria Fragni
- SSICA, Experimental Station for the Food Preserving Industry, viale Tanara 31a, 43121 Parma, Italy;
| | - Diego Baragaño
- Instituto de Ciencia y Tecnologia del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain;
| | - Patrizia Brunetti
- IBPM-CNR c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Roma, Italy; (M.L.A.); (M.C.)
| | - Giovanna Visioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy;
| | - Maura Cardarelli
- IBPM-CNR c/o Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Piazzale Aldo Moro, 00185 Roma, Italy; (M.L.A.); (M.C.)
| |
Collapse
|
5
|
Bi X, Wang Y, Qiu A, Wu S, Zhan W, Liu H, Li H, Qiu R, Chen G. Effects of arsenic on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrate. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134623. [PMID: 38754231 DOI: 10.1016/j.jhazmat.2024.134623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
This study aimed to investigate the impact of arsenic stress on the gut microbiota of a freshwater invertebrate, specifically the apple snail (Pomacea canaliculata), and elucidate its potential role in arsenic bioaccumulation and biotransformation. Waterborne arsenic exposure experiments were conducted to characterize the snail's gut microbiomes. The results indicate that low concentration of arsenic increased the abundance of gut bacteria, while high concentration decreased it. The dominant bacterial phyla in the snail were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteriota. In vitro analyses confirmed the critical involvement of the gut microbiota in arsenic bioaccumulation and biotransformation. To further validate the functionality of the gut microbiota in vivo, antibiotic treatment was administered to eliminate the gut microbiota in the snails, followed by exposure to waterborne arsenic. The results demonstrated that antibiotic treatment reduced the total arsenic content and the proportion of arsenobetaine in the snail's body. Moreover, the utilization of physiologically based pharmacokinetic modeling provided a deeper understanding of the processes of bioaccumulation, metabolism, and distribution. In conclusion, our research highlights the adaptive response of gut microbiota to arsenic stress and provides valuable insights into their potential role in the bioaccumulation and biotransformation of arsenic in host organisms. ENVIRONMENTAL IMPLICATION: Arsenic, a widely distributed and carcinogenic metalloid, with significant implications for its toxicity to both humans and aquatic organisms. The present study aimed to investigate the effects of As on gut microbiota and its bioaccumulation and biotransformation in freshwater invertebrates. These results help us to understand the mechanism of gut microbiota in aquatic invertebrates responding to As stress and the role of gut microbiota in As bioaccumulation and biotransformation.
Collapse
Affiliation(s)
- Xiaoyang Bi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Aiting Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shengze Wu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Wenhui Zhan
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Hui Liu
- Guangdong Testing Institute of Product Quality Supervision, Foshan 528300, China
| | - Huashou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guikui Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Li M, Kang Y, Kuang S, Wu H, Zhuang L, Hu Z, Zhang J, Guo Z. Efficient stabilization of arsenic migration and conversion in soil with surfactant-modified iron-manganese oxide: Environmental effects and mechanistic insights. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170526. [PMID: 38286296 DOI: 10.1016/j.scitotenv.2024.170526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 01/31/2024]
Abstract
The use of iron-manganese oxide (FMO) as a promising amendment for remediating arsenic (As) contamination in soils has gained attention, but its application is limited owing to agglomeration issues. This study aims to address agglomeration using surfactant-modified FMO and investigate their stabilization behavior towards As and resulting environmental changes upon amendments. The results confirmed the efficacy of surfactants and demonstrated that cetyltrimethylammonium-bromide-modified FMO significantly reduced the leaching concentration of As by 92.5 % and effectively suppressed the uptake of As by 85.8 % compared with the control groups. The ratio of the residual fraction increased from 30.5-41.6 % in unamended soil to 67.9-69.2 %. The number of active sites was through the introduction of surfactants and immobilized As via complexation, ion exchange, and redox reactions. The study also revealed that amendments and the concentration of As influenced the soil physicochemical properties and enriched bacteria associated with As and Fe reduction and changed the distribution of C, N, Fe, and As metabolism genes, which promoted the stabilization of As. The interactions among cetyltrimethylammonium bromide, FMO, and microorganisms were found to have the greatest effect on As immobilization.
Collapse
Affiliation(s)
- Mei Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
7
|
Sher AW, Aufrecht JA, Herrera D, Zimmerman AE, Kim YM, Munoz N, Trejo JB, Paurus VL, Cliff JB, Hu D, Chrisler WB, Tournay RJ, Gomez-Rivas E, Orr G, Ahkami AH, Doty SL. Dynamic nitrogen fixation in an aerobic endophyte of Populus. THE ISME JOURNAL 2024; 18:wrad012. [PMID: 38365250 PMCID: PMC10833079 DOI: 10.1093/ismejo/wrad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 02/18/2024]
Abstract
Biological nitrogen fixation by microbial diazotrophs can contribute significantly to nitrogen availability in non-nodulating plant species. In this study of molecular mechanisms and gene expression relating to biological nitrogen fixation, the aerobic nitrogen-fixing endophyte Burkholderia vietnamiensis, strain WPB, isolated from Populus trichocarpa served as a model for endophyte-poplar interactions. Nitrogen-fixing activity was observed to be dynamic on nitrogen-free medium with a subset of colonies growing to form robust, raised globular like structures. Secondary ion mass spectrometry (NanoSIMS) confirmed that N-fixation was uneven within the population. A fluorescent transcriptional reporter (GFP) revealed that the nitrogenase subunit nifH is not uniformly expressed across genetically identical colonies of WPB and that only ~11% of the population was actively expressing the nifH gene. Higher nifH gene expression was observed in clustered cells through monitoring individual bacterial cells using single-molecule fluorescence in situ hybridization. Through 15N2 enrichment, we identified key nitrogenous metabolites and proteins synthesized by WPB and employed targeted metabolomics in active and inactive populations. We cocultivated WPB Pnif-GFP with poplar within a RhizoChip, a synthetic soil habitat, which enabled direct imaging of microbial nifH expression within root epidermal cells. We observed that nifH expression is localized to the root elongation zone where the strain forms a unique physical interaction with the root cells. This work employed comprehensive experimentation to identify novel mechanisms regulating both biological nitrogen fixation and beneficial plant-endophyte interactions.
Collapse
Affiliation(s)
- Andrew W Sher
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, 98195-2100, United States
| | - Jayde A Aufrecht
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Daisy Herrera
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Amy E Zimmerman
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Young-Mo Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Nathalie Munoz
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Jesse B Trejo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Vanessa L Paurus
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - John B Cliff
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - William B Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Robert J Tournay
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, 98195-2100, United States
| | - Emma Gomez-Rivas
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, 98195-2100, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, United States
| | - Sharon L Doty
- School of Environmental and Forest Sciences, College of the Environment, University of Washington, Seattle, WA, 98195-2100, United States
| |
Collapse
|