1
|
Zhao Q, Zheng Y, Qiu Y, Yu Y, Huang M, Wu Y, Chen X, Huang Y, Cui S, Zhuang S. Graph Convolutional Network-Enhanced Model for Screening Persistent, Mobile, and Toxic and Very Persistent and Very Mobile Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6149-6157. [PMID: 38556993 DOI: 10.1021/acs.est.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The global management for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances has been further strengthened with the rapid increase of emerging contaminants. The development of a ready-to-use and publicly available tool for the high-throughput screening of PMT/vPvM substances is thus urgently needed. However, the current model building with the coupling of conventional algorithms, small-scale data set, and simplistic features hinders the development of a robust model for screening PMT/vPvM with wide application domains. Here, we construct a graph convolutional network (GCN)-enhanced model with feature fusion of a molecular graph and molecular descriptors to effectively utilize the significant correlation between critical descriptors and PMT/vPvM substances. The model is built with 213,084 substances following the latest PMT classification criteria. The application domains of the GCN-enhanced model assessed by kernel density estimation demonstrate the high suitability for high-throughput screening PMT/vPvM substances with both a high accuracy rate (86.6%) and a low false-negative rate (6.8%). An online server named PMT/vPvM profiler is further developed with a user-friendly web interface (http://www.pmt.zj.cn/). Our study facilitates a more efficient evaluation of PMT/vPvM substances with a globally accessible screening platform.
Collapse
Affiliation(s)
- Qiming Zhao
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yuting Zheng
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100029, China
| | - Yu Qiu
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Yu
- Solid Waste and Chemicals Management Center, Ministry of Ecology and Environment of the People's Republic of China, Beijing 100029, China
| | - Meiling Huang
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yiqu Wu
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xiyu Chen
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Huang
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shixuan Cui
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, and Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Chen J, Zhang S, Xu W, Chen C, Chen A, Lu R, Jing Q, Liu J. Exploring long-term global environmental impacts of chlorinated paraffins (CPs) in waste: Implications for the Stockholm and Basel Conventions and the global plastic treaty. ENVIRONMENT INTERNATIONAL 2024; 185:108527. [PMID: 38422873 DOI: 10.1016/j.envint.2024.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Chlorinated paraffins (CPs), mainly short-chain CPs (SCCPs) and medium-chain CPs (MCCPs), are currently the most produced and used industrial chemicals related to persistent organic pollutants (POPs) globally. These chemicals are widely detected in the environment and in the human body. As the release of SCCPs and MCCPs from products represents only a small fraction of their stock in products, the potential long-term release of CPs from a large variety of products at the waste stage has become an issue of great concern. The results of this study showed that, by 2050, SCCPs and MCCPs used between 2000 and 2021 will cumulatively generate 226.49 Mt of CP-containing wastes, comprising 8610.13 kt of SCCPs and MCCPs. Approximately 79.72 Mt of CP-containing wastes is predicted to be generated abroad through the international trade of products using SCCPs and MCCPs. The magnitude, distribution, and growth of CP-containing wastes subject to environmentally sound disposal will depend largely on the relevant provisions of the Stockholm and Basel Conventions and the forthcoming global plastic treaty. According to multiple scenarios synthesizing the provisions of the three conventions, 26.6-101.1 Mt of CP-containing wastes will be subject to environmentally sound disposal as POP wastes, which would pose a great challenge to the waste disposal capacity of China, as well as for countries importing CP-containing products. The additional 5-year exemption period for MCCPs is expected to see an additional 10 Mt of CP-containing wastes subject to environmentally sound disposal. Thus, there is an urgent need to strengthen the Stockholm and Basel Conventions and the global plastic treaty.
Collapse
Affiliation(s)
- Jiazhe Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shaoxuan Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Weiguang Xu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chengkang Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Anna Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Rongjing Lu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qiaonan Jing
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Institute of Carbon Neutrality, Peking University, Beijing 100871, China.
| |
Collapse
|