1
|
Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H. Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177077. [PMID: 39461536 DOI: 10.1016/j.scitotenv.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Antiviral drugs are widely used, yet their potential risks during early development, particularly within the central nervous system, remain contentious. Oseltamivir phosphate (OSE), a commonly prescribed antiviral, is increasingly detected in various environments. However, its toxicity to organisms and the underlying mechanisms are not well understood. In this study, we employed the zebrafish model to evaluate the developmental neurotoxic effects of OSE at environmentally and therapeutically relevant doses, through high-throughput behavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention, and biochemical and molecular assays. Our results indicated that OSE exposure increased heart rate and induced pericardial edema in zebrafish larvae. Additionally, OSE-exposed larvae exhibited hyperactive behavior, impaired social interactions, and reduced habitual learning capacity. Although OSE at our selected levels did not significantly affect neuron count in the brain, it activated neuroinflammatory responses, altered blood vessel morphology, modulated neurotransmitter levels and the expression of neurodevelopment-related genes. Transcriptomic analysis revealed upregulation of mitochondria-related genes associated with oxidative phosphorylation. Further assessments of mitochondrial function demonstrated altered activities of respiratory chain complexes, reduced mitochondrial membrane potential (MMP), and decreased ATP content. Notably, co-treatment with mitochondrial protectants acetyl-l-carnitine-hydrochloride (ALC) or nicotinamide riboside (NR) effectively mitigated OSE-induced neurobehavioral disorders. These findings suggest that overuse of OSE can pose neurodevelopmental risks for both humans and animals, potentially attributable to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Minjian Zou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zhirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Jiayi Ruan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Bixi Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Chuanyin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
2
|
Zhu Y, Li L, Yi S, Hu R, Wu J, Xu J, Xu J, Zhu Q, Cen S, Yuan Y, Sun D, Ahmad W, Zhang H, Cao X, Ju J. Deep learning-assisted detection of psychoactive water pollutants using behavioral profiling of zebrafish embryos. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136358. [PMID: 39486333 DOI: 10.1016/j.jhazmat.2024.136358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Water pollution poses a significant risk to the environment and human health, necessitating the development of innovative detection methods. In this study, a series of representative psychoactive compounds were selected as model pollutants, and a new approach combining zebrafish embryo behavioral phenotyping with deep learning was used to identify and classify water pollutants. Zebrafish embryos were exposed to 17 psychoactive compounds at environmentally relevant concentrations (1 and 10 μg/L), and their locomotor behavior was recorded at 5 and 6 days post-fertilization (dpf). We constructed six distinct zebrafish locomotor track datasets encompassing various observation times and developmental stages and evaluated multiple deep learning models on these datasets. The results demonstrated that the ResNet101 model performed optimally on the 1-min track dataset at 6 dpf, achieving an accuracy of 65.35 %. Interpretability analyses revealed that the model effectively focused on the relevant locomotor track features for classification. These findings suggest that the integration of zebrafish embryo behavioral analysis with deep learning can serve as an environmentally friendly and economical method for detecting water pollutants. This approach offers a new perspective for water quality monitoring and has the potential to assist existing chemical analytical techniques in detection, thereby advancing environmental toxicology research and water pollution control efforts.
Collapse
Affiliation(s)
- Ya Zhu
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China; School of Medicine, Taizhou University, Taizhou 318000, China
| | - Lan Li
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China
| | - Shaokui Yi
- School of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Rui Hu
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianjun Wu
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinqian Xu
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China
| | - Junguang Xu
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinnan Zhu
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China
| | - Shijia Cen
- School of Medicine, Taizhou University, Taizhou 318000, China
| | - Yuxuan Yuan
- School of Medicine, Taizhou University, Taizhou 318000, China
| | - Da Sun
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Waqas Ahmad
- School of Medicine, Taizhou University, Taizhou 318000, China
| | - Huilan Zhang
- School of Medicine, Taizhou University, Taizhou 318000, China
| | - Xuan Cao
- School of Medicine, Taizhou University, Taizhou 318000, China.
| | - Jingjuan Ju
- School of Public health, Wenzhou Medical University, Wenzhou 325035, China; Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Zheng J, Li C, Li S, Zheng X. Decabromodiphenyl ethane (DBDPE) inhibited the growth and feeding by disrupting the gut and digestive gland homeostasis in octopus Amphioctopus fangsiao (Mollusca: Cephalopoda). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177364. [PMID: 39491558 DOI: 10.1016/j.scitotenv.2024.177364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) poses a potential threat to animals, but its effects on cephalopods remain unknown. In this study, Amphioctopus fangsiao, a common octopus in China, was exposed to DBDPE (0, 1, 50, 100, 300 μg/L) for 28 days. Chemical analysis revealed that the digestive gland bore a greater burden of DBDPE compared with other tissues. In addition, accumulated DBDPE could curb the growth and feeding performance of A. fangsiao. The potential effects on the "gut-digestive gland axis" were also elucidated. Specifically, DBDPE in the gut shifted the microorganisms toward a Bacteroidetes-dominated composition, and impaired the intestinal epithelial barrier, thereby triggering oxidative stress and inflammation. Excessive DBDPE also threatens the digestive gland function, including histological damage, immune reaction, oxidative stress, glucolipid metabolism dysfunction, and neurotoxicity. Metabolome plasticity enabled A. fangsiao to develop a DBDPE stress-adaptive metabolic profile via alteration of glucolipid metabolism, immunity, oxidative stress, and signaling molecules. Taken together, we identified a new detoxification mechanism linking the microbiota-gut-digestive gland axis with the growth and food intake of A. fangsiao, which is the first time it has been demonstrated in mollusks. These findings provided important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Shuwen Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Yang L, Zhang Y, Hua J, Song G, Li F, Zheng N, Zhang T, Xu Z, Ren X, Zhu B, Han Y, Guo Y, Han J, Zhou B. Integrated Studies on Male Reproductive Toxicity of Decabromodiphenyl Ethane in Zebrafish Spermatozoa Ex Vivo, Male Zebrafish in Vivo, and GC-1 Cells in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117005. [PMID: 39570742 PMCID: PMC11580837 DOI: 10.1289/ehp14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/06/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Legacy brominated flame retardants have been recognized as risky factors leading to declined sperm quality. The widespread utilization of decabromodiphenyl ethane (DBDPE) as a replacement for decabromodiphenyl ether has given rise to considerable concern over its potential risks to reproductive health. OBJECTIVES The objectives were to quickly determine whether DBDPE affects sperm quality upon ex vivo exposure, to reveal the reproductive outcomes and underlying molecular mechanisms using an in vivo zebrafish model exposed to DBDPE, and to validate the potential impact on DNA damage and energy metabolism balance in vitro. METHODS Zebrafish spermatozoa were treated with DBDPE (0.01, 0.1, 1, 10 μ M ) for 3 h, and the spermatozoa motility and fertilization ability with normal eggs were evaluated. Then adult male zebrafish were treated with DBDPE (0.1, 1, 10, and 100 nM ) for 2 months, and their reproductive performance was examined. Four-dimensional label-free proteome and phosphoproteome were performed in zebrafish testes, and the findings were validated by multiple indicators. Finally, mouse spermatogonial GC-1 cells were treated with DBDPE (0.1, 1 μ M ) for 72 h, and DNA damage was examined, as well as the energy production of glycolysis and oxidative phosphorylation. RESULTS Ex vivo exposure to DBDPE caused lower motility and fertilization rates of zebrafish spermatozoa. In vivo exposure to DBDPE caused lower sperm motility and abnormal spermatogenesis in male zebrafish testes. Integrated whole-proteome and phosphoproteome analysis revealed DNA damage responses and energy metabolic disorders in zebrafish testes. A dosage window characterized by higher mitochondrial membrane potential (MMP) in combination with unchanged reactive oxygen species and apoptosis rates was observed in both zebrafish testes and GC-1 cells. DISCUSSION This study suggests that in zebrafish, DBDPE exposure could impair sperm quality and spermatogenesis, and the underlying mechanism could be related to DNA damage and energy metabolic reprogramming in testicular germ cells. https://doi.org/10.1289/EHP14426.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yindan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianghuan Hua
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, People’s Republic of China
| | - Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Fan Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Na Zheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, People’s Republic of China
| | - Xinxin Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Biran Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Yanna Han
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Liu T, Shang D, Tian W, Li Y, Xie R, Zhao J, Dong H. The concentration of dissolved organic matter impacts the neurobehavior in zebrafish larvae exposed to cyclophosphamide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61181-61190. [PMID: 39404950 DOI: 10.1007/s11356-024-34907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/27/2024] [Indexed: 11/05/2024]
Abstract
Dissolved organic matter (DOM) occurs ubiquitously in various water matrices and affects the chemical speciation and toxicity of emerging contaminants, such as cyclophosphamide (CP). However, the effects of CP in aquatic organisms with the presence of DOM have been relatively less addressed. In this study, zebrafish eggs < 4 h post fertilization (hpf) were exposed to CP (0 and 50 μg/L) and humic acid (HA, a main component of DOM, 0, 3, 10, and 30 mg-C/L) until 7 days post fertilization, and its toxicity was evaluated by behavioral approaches and transcription of nervous-related genes. An increase in swimming velocity and anxiety was noticed in zebrafish larvae exposed to CP. The related genes of neurotransmitter (drd1, mao, thp1b, and gad2), neurodevelopment (gli2b, nrd, and gfap), and neuroinflammation (thfα, casp3, and il-6) were upregulated by CP. In the presence of HA (3 mg-C/L), the behaviors and gene transcripts of zebrafish larvae were enhanced, while at 10 mg-C/L, they were mitigated. This study has demonstrated that DOM at low concentration increases the toxicity of CP and at high concentration alleviates its toxicity. This study highlights the importance of emerging contaminant exposure with the presence of DOM on their toxicities in aquatic organisms.
Collapse
Affiliation(s)
- Tianming Liu
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China.
| | - Dongshen Shang
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Weiqi Tian
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Yindong Li
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Rong Xie
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Jianxing Zhao
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| | - Heru Dong
- China MCC20 Group Co., Ltd, Pangu Road 777, Shanghai, 325035, China
| |
Collapse
|
6
|
Wang W, Li Z, Yuan S, Du Z, Li J, Peng H, Ru S. A Potential Neurotoxic Mechanism: Bisphenol S-Induced Inhibition of Glucose Transporter 1 Leads to ATP Excitotoxicity in the Zebrafish Brain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15463-15474. [PMID: 39167196 DOI: 10.1021/acs.est.4c03870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Many environmental pollutants have neurotoxic effects, but the initial molecular events involved in these effects are unclear. Here, zebrafish were exposed to the neurotoxicant bisphenol S (BPS, 1, 10, or 100 μg/L) from the embryonic stage to the larval stage to explore the ability of BPS to interfere with energy metabolism in the brain. BPS, which is similar to a glucose transporter 1 (GLUT1) inhibitor, inhibited GLUT1 function but increased mitochondrial activity in the brains of larval zebrafish. Interestingly, GLUT1 inhibitor treatment and BPS exposure did not reduce energy production in the brain; instead, they increased ATP production by inducing the preferential use of ketone bodies. Moreover, BPS promoted the protein expression of the purinergic 2X receptor but inhibited the purinergic 2Y-mediated phosphatidylinositol signaling pathway, indicating that excess ATP acts as a neurotransmitter to activate the purinergic 2X receptor under the BPS-induced restriction of GLUT1 function. BPS-induced inhibition of GLUT1 increased the number of neurons but promoted apoptosis by activating ATP-purinergic 2X receptors in the brain, causing ATP excitatory neurotoxicity. Our data reveal a potential neurotoxic mechanism induced by BPS that may represent a new adverse outcome pathway.
Collapse
Affiliation(s)
- Weiwei Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ze Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shipeng Yuan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zehui Du
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jiali Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongyuan Peng
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
7
|
Shi B, Xu T, Chen T, Xu S, Yao Y. Co-exposure of decabromodiphenyl ethane and polystyrene nanoplastics damages grass carp (Ctenopharyngodon idella) hepatocytes: Focus on the role of oxidative stress, ferroptosis, and inflammatory reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173575. [PMID: 38823712 DOI: 10.1016/j.scitotenv.2024.173575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Decabromodiphenyl ethane (DBDPE) and polystyrene nanoplastics (PS-NPs) are emerging pollutants that seriously threaten the ecological safety of the aquatic environment. However, the hepatotoxicity effect of their combined exposure on aquatic organisms has not been reported to date. In, this study, the effects of single or co-exposure of DBDPE and PS-NPs on grass carp hepatocytes were explored and biomarkers related to oxidative stress, ferroptosis, and inflammatory cytokines were evaluated. The results show that both single and co-exposure to DBDPE and PS-NPs caused oxidative stress. Oxidative stress was induced by increasing the contents of pro-oxidation factors (ROS, MDA, and LPO), inhibiting the activity of antioxidant enzymes (CAT, GPX, T-SOD, GSH, and T-AOC), and downregulating the mRNA expressions of antioxidant genes (GPX1, GSTO1, SOD1, and CAT); the effects of combined exposure were stronger overall. Both single and co-exposure to DBDPE and PS-NPs also elevated Fe2+ content, promoted the expressions of TFR1, STEAP3, and NCOA4, and inhibited the expressions of FTH1, SLC7A11, GCLC, GSS, and GPX4; these effects resulted in iron overload-induced ferroptosis, where co-exposure had stronger adverse effects on ferroptosis-related biomarkers than single exposure. Moreover, single or co-exposure enhanced inflammatory cytokine levels, as evidenced by increased mRNA expressions of IL-6, IL-12, IL-17, IL-18, IL-1β, TNF-α, IFN-γ, and MPO. Co-exposure exhibited higher expression of pro-inflammatory cytokines compared to single exposure. Interestingly, the ferroptosis inhibitor ferrostatin-1 intervention diminished the above changes. In brief, the results suggest that DBDPE and PS-NPs trigger elevated levels of inflammatory cytokines in grass crap hepatocytes. This elevation is achieved via oxidative stress and iron overload-mediated ferroptosis, where cytotoxicity was stronger under co-exposure compared to single exposure. Overall, the findings contribute to elucidating the potential hepatotoxicity mechanisms in aquatic organisms caused by co-exposure to DBDPE and PS-NPs.
Collapse
Affiliation(s)
- Bendong Shi
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujie Yao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
8
|
Jin T, Liu Y, Lyu H, He Y, Sun H, Tang J, Xing B. Plastic takeaway food containers may cause human intestinal damage in routine life usage: Microplastics formation and cytotoxic effect. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134866. [PMID: 38870856 DOI: 10.1016/j.jhazmat.2024.134866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
The microplastics and organic additives formed in routine use of plastic takeaway food containers may pose significant health risks. Thus, we collected plastic containers made of polystyrene, polypropylene, polyethylene terephthalate, polylactic acid and simulated two thermal usages, including hot water (I) and microwave treatments (M). Nile Red fluorescence staining was developed to improve accurate counting of microplastics with the aid of TEM and DLS analysis. The quantity of MPs released from thermal treatments was determined ranging from 285.7 thousand items/cm2 to 681.5 thousand items/cm2 in containers loaded with hot water with the following order: IPS>IPP>IPET>IPLA, while microwave treatment showed lower values ranging from 171.9 thousand items/cm2 to 301.6 thousand items/cm2. In vitro toxicity test using human intestinal epithelial Caco-2 cells indicated decrease of cell viability in raw leachate, resuspended MPs and supernatants, which might further lead to cell membrane rupture, ROS production, and decreased mitochondrial membrane potential. Moreover, the leachate inhibited the expression of key genes in the electron transport chain (ETC) process, disrupted energy metabolism. For the first time, we isolate the actually released microplastics and organic substances for in vitro toxicity testing, and demonstrate their potential impacts to human intestine. SYNOPSIS: Plastic take-out containers may release microplastics and organic substances during daily usage, both of which can cause individual and combined cytotoxic effects on human colon adenocarcinoma cells Caco-2.
Collapse
Affiliation(s)
- Tianyue Jin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yaxuan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
9
|
Pei J, Chen S, Li L, Wang K, Pang A, Niu M, Peng X, Li N, Wu H, Nie P. Impact of polystyrene nanoplastics on apoptosis and inflammation in zebrafish larvae: Insights from reactive oxygen species perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174737. [PMID: 39004365 DOI: 10.1016/j.scitotenv.2024.174737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
In recent years, there has been a growing focus on the toxicity and mortality induced by nanoplastics (NPs) in aquatic organisms. However, studies investigating mechanisms underlying oxidative stress (OS), apoptosis, and inflammation induced by NPs in fish remain limited. This study observed that polystyrene NPs (PS-NPs) were accumulated into zebrafish larvae and zebrafish embryonic fibroblast (ZF4 cells), accompanied by the occurrence of pathological damage both at the cellular and tissue-organ level. Additionally, the transcriptional up-regulation of NADPH oxidases (NOXs) and subsequent excessive generation of reactive oxygen species (ROS) resulted in notable changes in the relative mRNA and protein expression levels associated with antioxidant oxidase systems in larvae. Furthermore, the study identified the impact of NPs on mitochondrial ultrastructural, resulting in mitochondrial depolarization and downregulation of mRNA expression related to the electron transport chain due to excessive ROS generation. Short-term exposure to NPs also triggered apoptosis and inflammation in zebrafish larvae, evident from significant up-regulation in mRNA expressions of proapoptotic factors and NF-κB proinflammatory signaling pathway, as well as increased transcription and protein levels of pro-inflammatory factors in larvae. Inhibition of intracellular excessive ROS effectively reduced the induction of apoptosis, NF-κB P65 nuclear migration levels, and cytokine secretion, underscoring OS as a pivotal factor throughout the process of apoptosis and inflammatory responses induced by NPs. This research significantly advances our comprehension of biological effects and underlying mechanisms of NPs in freshwater fish.
Collapse
Affiliation(s)
- Jincheng Pei
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China
| | - Shannan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Li Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Kailun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Anning Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Mengmeng Niu
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Xueyun Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Hongjuan Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei Province 430074, China.
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology and Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
10
|
Yin JH, Horzmann KA. Embryonic Zebrafish as a Model for Investigating the Interaction between Environmental Pollutants and Neurodegenerative Disorders. Biomedicines 2024; 12:1559. [PMID: 39062132 PMCID: PMC11275083 DOI: 10.3390/biomedicines12071559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Environmental pollutants have been linked to neurotoxicity and are proposed to contribute to neurodegenerative disorders. The zebrafish model provides a high-throughput platform for large-scale chemical screening and toxicity assessment and is widely accepted as an important animal model for the investigation of neurodegenerative disorders. Although recent studies explore the roles of environmental pollutants in neurodegenerative disorders in zebrafish models, current knowledge of the mechanisms of environmentally induced neurodegenerative disorders is relatively complex and overlapping. This review primarily discusses utilizing embryonic zebrafish as the model to investigate environmental pollutants-related neurodegenerative disease. We also review current applicable approaches and important biomarkers to unravel the underlying mechanism of environmentally related neurodegenerative disorders. We found embryonic zebrafish to be a powerful tool that provides a platform for evaluating neurotoxicity triggered by environmentally relevant concentrations of neurotoxic compounds. Additionally, using variable approaches to assess neurotoxicity in the embryonic zebrafish allows researchers to have insights into the complex interaction between environmental pollutants and neurodegenerative disorders and, ultimately, an understanding of the underlying mechanisms related to environmental toxicants.
Collapse
Affiliation(s)
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| |
Collapse
|
11
|
Hua J, Zhang T, Chen X, Zhu B, Zhao M, Fu K, Zhang Y, Tang H, Pang H, Guo Y, Han J, Yang L, Zhou B. Behavioral impairments and disrupted mitochondrial energy metabolism induced by polypropylene microplastics in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174541. [PMID: 38977091 DOI: 10.1016/j.scitotenv.2024.174541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Polypropylene microplastics (PP-MPs) are emerging pollutant commonly detected in various environmental matrices and organisms, while their adverse effects and mechanisms are not well known. Here, zebrafish embryos were exposed to environmentally relevant concentrations of PP-MPs (0.08-50 mg/L) from 2 h post-fertilization (hpf) until 120 hpf. The results showed that the body weight was increased at 2 mg/L, heart rate was reduced at 0.08 and 10 mg/L, and behaviors were impaired at 0.4, 10 or 50 mg/L. Subsequently, transcriptomic analysis in the 0.4 and 50 mg/L PP-MPs treatment groups indicated potential inhibition on the glycolysis/gluconeogenesis and oxidative phosphorylation pathways. These findings were validated through alterations in multiple biomarkers related to glucose metabolism. Moreover, abnormal mitochondrial ultrastructures were observed in the intestine and liver in 0.4 and 50 mg/L PP-MPs treatment groups, accompanied by significant decreases in the activities of four mitochondrial electron transport chain complexes and ATP contents. Oxidative stress was also induced, as indicated by significantly increased ROS levels and significant reduced activities of CAT and SOD and GSH contents. All the results suggested that environmentally relevant concentrations of PP-MPs could induce disrupted mitochondrial energy metabolism in zebrafish, which may be associated with the observed behavioral impairments. This study will provide novel insights into PP-MPs-induced adverse effects and highlight need for further research.
Collapse
Affiliation(s)
- Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Taotao Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yindan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huijia Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hao Pang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
12
|
Zhu B, Chen X, Zhang T, Zhang Q, Fu K, Hua J, Zhang M, Qi Q, Zhao B, Zhao M, Yang L, Zhou B. Interactions between intestinal microbiota and metabolites in zebrafish larvae exposed to polystyrene nanoplastics: Implications for intestinal health and glycolipid metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134478. [PMID: 38696962 DOI: 10.1016/j.jhazmat.2024.134478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/09/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Previous studies have shown the harmful effects of nanoscale particles on the intestinal tracts of organisms. However, the specific mechanisms remain unclear. Our present study focused on examining the uptake and distribution of polystyrene nanoplastics (PS-NPs) in zebrafish larvae, as well as its toxic effects on the intestine. It was found that PS-NPs, marked with red fluorescence, primarily accumulated in the intestine section. Subsequently, zebrafish larvae were exposed to normal PS-NPs (0.2-25 mg/L) over a critical 10-day period for intestinal development. Histopathological analysis demonstrated that PS-NPs caused structural changes in the intestine, resulting in inflammation and oxidative stress. Additionally, PS-NPs disrupted the composition of the intestinal microbiota, leading to alterations in the abundance of bacterial genera such as Pseudomonas and Aeromonas, which are associated with intestinal inflammation. Metabolomics analysis showed alterations in metabolites that are primarily involved in glycolipid metabolism. Furthermore, MetOrigin analysis showed a significant correlation between bacterial flora (Pedobacter and Bacillus) and metabolites (D-Glycerate 2-phosphate and D-Glyceraldehyde 3-phosphate), which are related to the glycolysis/gluconeogenesis pathways. These findings were further validated through alterations in multiple biomarkers at various levels. Collectively, our data suggest that PS-NPs may impair the intestinal health, disrupt the intestinal microbiota, and subsequently cause metabolic disorders.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Qianqian Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Mengyuan Zhang
- Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Qing Qi
- Wuhan Business University, Wuhan 430056, China
| | - Binbin Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Zheng N, Wang X, Zhang Y, Hua J, Zhu B, Zhou Y, Xu Z, Luo L, Han J, Yang L, Zhou B. Mechanistic Insights into 1,2-bis(2,4,6-tribromophenoxy)ethane-Induced Male Reproductive Toxicity in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8251-8263. [PMID: 38695612 DOI: 10.1021/acs.est.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 μg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.
Collapse
Affiliation(s)
- Na Zheng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yuxi Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhixiang Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lijun Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Rao C, Chu F, Fang F, Xiang D, Xian B, Liu X, Bao S, Fang T. Toxic effects and comparison of common amino antioxidants (AAOs) in the environment on zebrafish: A comprehensive analysis based on cells, embryos, and adult fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171678. [PMID: 38485016 DOI: 10.1016/j.scitotenv.2024.171678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
The ubiquity of amino antioxidants (AAOs) in the environment has attracted increasing attention, given their potential toxicity. This investigation represents a pioneering effort, systematically scrutinizing the toxicological effects of four distinct AAOs across the developmental spectrum of zebrafish, encompassing embryonic, larvae, and adult stages. The results indicate that four types of AAO exhibit varying degrees of cell proliferation toxicity. Although environmentally relevant concentrations of AAOs exhibit a comparatively circumscribed impact on zebrafish embryo development, heightened concentrations (300 μg/L) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and N-isopropyl-N'-phenyl-p-phenylenediamine (IPPD) distinctly evoke developmental toxicity. Behavioral analysis results indicate that at concentrations of 20 and 300 μg/L, the majority of AAOs significantly reduced the swimming speed and activity of larvae. Moreover, each AAO triggers the generation of reactive oxygen species (ROS) in larvae, instigating diverse levels of oxidative stress. The study delineates parallel toxicological patterns in zebrafish exposed to 300 μg/L of 6PPD and IPPD, thereby establishing a comparable toxicity profile. The comprehensive toxicity effects among the four AAOs is as follows: IPPD >6PPD > N-Phenyl-1-naphthylamine (PANA) > diphenylamine (DPA). These findings not only enrich our comprehension of the potential hazards associated with AAOs but also provide data support for structure-based toxicity prediction models.
Collapse
Affiliation(s)
- Chenyang Rao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fuhao Chu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fang Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Dongfang Xiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Bo Xian
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaying Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, PR China
| | - Shaopan Bao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Zhang Q, Wu R, Zheng S, Luo C, Huang W, Shi X, Wu K. Exposure of male adult zebrafish (Danio rerio) to triphenyl phosphate (TPhP) induces eye development disorders and disrupts neurotransmitter system-mediated abnormal locomotor behavior in larval offspring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133332. [PMID: 38147758 DOI: 10.1016/j.jhazmat.2023.133332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a widely used organophosphorus flame retardant, which has become ubiquitous in the environment. However, little information is available regarding its transgenerational effects. This study aimed to investigate the developmental toxicity of TPhP on F1 larvae offspring of adult male zebrafish exposed to various concentrations of TPhP for 28 or 60 days. The findings revealed significant morphological changes, alterations in locomotor behavior, variations in neurotransmitter, histopathological changes, oxidative stress levels, and disruption of Retinoic Acid (RA) signaling in the F1 larvae. After 28 and 60 days of TPhP exposure, the F1 larvae exhibited a myopia-like phenotype with pathological alterations in the lens and retina. The genes involved in the RA signaling pathway were down-regulated following parental TPhP exposure. Swimming speed and total distance of F1 larvae were significantly reduced by TPhP exposure, and long-term exposure to environmental levels of TPhP had more pronounced effects on locomotor behavior and neurotransmitter levels. In conclusion, TPhP induced histological and morphological alterations in the eyes of F1 larvae, leading to visual dysfunction, disruption of RA signaling and neurotransmitter systems, and ultimately resulting in neurobehavioral abnormalities. These findings highlight the importance of considering the impact of TPhP on the survival and population reproduction of wild larvae.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
16
|
Li F, Song G, Wang X, Sun Y, Zhou S, Zhang Y, Hua J, Zhu B, Yang L, Zhang W, Zhou B. Evidence for Adverse Effects on Liver Development and Regeneration in Zebrafish by Decabromodiphenyl Ethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19419-19429. [PMID: 37946494 DOI: 10.1021/acs.est.3c06747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a ubiquitous emerging pollutant, could be enriched in the liver of organisms, but its effects and mechanisms on liver development and regeneration remain largely unknown. In the present study, we first investigated the adverse effects on liver development and found decreased area and intensity of fluorescence in transgenic zebrafish larvae exposed to DBDPE; further results in wild-type zebrafish larvae revealed a possible mechanism involving disturbed MAPK/Fox O signaling pathways and cell cycle arrest as indicated by decreased transcription of growth arrest and DNA-damage-inducible beta a (gadd45ba). Subsequently, an obstructed recovery process of liver tissue after partial hepatectomy was characterized by the changing profiles of ventral lobe-to-intestine ratio in transgenic female adults upon DBDPE exposure; further results confirmed the adverse effects on liver regeneration by the alterations of the hepatic somatic index and proliferating cell nuclear antigen expression in wild-type female adults and also pointed out a potential role of a disturbed signaling pathway involving cell cycles and glycerolipid metabolism. Our results not only provided novel evidence for the hepatotoxicity and underlying mechanism of DBDPE but also were indicative of subsequent ecological and health risk assessment.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guili Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Yumiao Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Shanqi Zhou
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yindan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Zhang
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|