1
|
Samui S, Kumar G, Rana TRK, Dey RS. Electrochemical oxygen activation driven by enamine-keto push-pull interactions in triazole-based covalent organic polymers. Chem Commun (Camb) 2024; 60:14280-14283. [PMID: 39544073 DOI: 10.1039/d4cc05271d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
We have developed two triazole-based covalent organic polymers (COPs) with donor-acceptor motifs. The keto-enriched COP demonstrated exceptional oxygen activation via electrochemical stimuli, driven by strong push-pull interactions. In situ studies and DFT calculations confirmed the critical role of enamine carbon positive charges in enhancing performance, setting new benchmarks in COP design.
Collapse
Affiliation(s)
- Surajit Samui
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| | - Greesh Kumar
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| | | | - Ramendra Sundar Dey
- Institute of Nano Science and Technology, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
2
|
Zhang J, Li X, Hu H, Huang H, Li H, Sun X, Ma T. Enhancing photocatalytic performance of covalent organic frameworks via ionic polarization. Nat Commun 2024; 15:9576. [PMID: 39505870 PMCID: PMC11541737 DOI: 10.1038/s41467-024-53834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Covalent organic frameworks have emerged as a thriving family in the realm of photocatalysis recently, yet with concerns about their high exciton dissociation energy and sluggish charge transfer. Herein, a strategy to enhance the built-in electric field of series β-keto-enamine-based covalent organic frameworks by ionic polarization method is proposed. The ionic polarization is achieved through a distinctive post-synthetic quaternization reaction which can endow the covalent organic frameworks with separated charge centers comprising cationic skeleton and iodide counter-anions. The stronger built-in electric field generated between their cationic framework and iodide anions promotes charge transfer and exciton dissociation efficiency. Moreover, the introduced iodide anions not only serve as reaction centers with lowered H* formation energy barrier, but also act as electron extractant suppressing the recombination of electron-hole pairs. Therefore, the photocatalytic performance of the covalent organic frameworks shows notable improvement, among which the CH3I-TpPa-1 can deliver an high H2 production rate up to 9.21 mmol g-1 h-1 without any co-catalysts, representing a 42-fold increase compared to TpPa-1, being comparable to or possibly exceeding the current covalent organic framework photocatalysts with the addition of Pt co-catalysts.
Collapse
Affiliation(s)
- Jiahe Zhang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Haijun Hu
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, China
| | - Hui Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia
| | - Xiaodong Sun
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang, People's Republic of China.
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, Australia.
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, Australia.
| |
Collapse
|
3
|
Xia L, Chen M, Li G, An T. Can photocatalysis inhibit interspecies bacterial cooperation to quench the formation of robust complex bacterial biofilms in water environments? WATER RESEARCH 2024; 262:122137. [PMID: 39059198 DOI: 10.1016/j.watres.2024.122137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
Bacterial biofilms pose significant a public health risk as an environmental reservoir for opportunistic aquatic bacterial pathogens. Understanding the interspecies roles of complex bacterial biofilms under different stimuli and regulatory mechanisms of stress responses is the key to controlling their dissemination. Herein, two-species mixture (TSM) biofilms (Staphylococcus aureus and Pseudomonas aeruginosa) were constructed in a flowthrough reactor. Compared with the single-species biofilms, the TSM biofilm had higher growth activity to reach maturity faster, forming a staggered community structure. Moreover, the TSM biofilm exhibited greatly improved resistance to different antibiotics (16-128 times higher), especially to those that act on protein synthesis and cell membrane integrity, when compared to single planktonic microorganisms. In the presence of stimuli, photocatalysis effectively inactivated the TSM biofilm within 10 h, a 4-fold shorter inactivation time compared to UVC irradiation. In addition, photocatalysis effectively depleted the extracellular polymers of the TSM biofilm and inhibited secretion of their interspecies quorum sensing signaling molecule autoinducer-2 (AI-2). However, the expression of AI-2 induced related virulence factors, and biofilm growth-related genes were initially up-regulated 3 - 10 fold for the TSM biofilm within the first 2 - 4 h of photocatalysis, followed by significant down-regulation. Furthermore, the addition of the AI-2 precursor 4,5-dihydroxy-2,3-pentanedione effectively delayed the photocatalytic inactivation efficiency of the TSM biofilm compared to the control. These results suggest that photocatalysis can effectively inactivate biofilms by inhibiting interspecies cooperation by quenching AI-2 in the TSM biofilm. This work sheds light on controlling biofilms in public health engineering systems.
Collapse
Affiliation(s)
- Longji Xia
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Min Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
4
|
Deng Z, Zhang W, Sun P, Zhao H, Cao X, Li G, Xiong S, Liu Q. Donor polarization engineering of conjugated microporous polymers to boost exciton dissociation for photocatalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143236. [PMID: 39222690 DOI: 10.1016/j.chemosphere.2024.143236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The misuse and inevitable release of antibiotics can cause significant harm to both human health and the environment, and the use of polymeric semiconductors for photodegradation of antibiotics in aqueous environments is one of the most effective strategies to alleviate the current dilemma. Nevertheless, the inherently high exciton binding energy (Eb) and low photogenerated carrier transfer efficiency for most photocatalysts results in unsatisfactory photodegradation performance. Hence, this work proposes a donor polarization strategy to regulate the exciton dissociation of conjugated microporous polymers (CMPs) by minimizing their Eb. Results exhibited that the introduction of the strong donor unit 3,4-ethylenedioxythiophene (EDOT) not only reduces the Eb and effectively promotes exciton dissociation, but also broadens the visible light absorption of CMP. Among them, EdtTz-CMP with the lowest Eb (99 meV) delivered an efficiency of 94.6% in photocatalytic degradation of tetracycline (TC) with in 90 min, significantly higher than those of its analogues. This work provides a viable approach to design CMPs by tuning the intrinsic dipole of the donor for efficient environmental purification.
Collapse
Affiliation(s)
- Zhaozhang Deng
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Weijie Zhang
- College of Materials and Chemical Engineering, Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Penghao Sun
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hongwei Zhao
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinxiu Cao
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Gen Li
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shaohui Xiong
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qingquan Liu
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
5
|
Li S, Mao Y, Yang J, Li Y, Dong J, Wang Z, Jiang L, He S. Efficient integration of covalent triazine frameworks (CTFs) for augmented photocatalytic efficacy: A review of synthesis, strategies, and applications. Heliyon 2024; 10:e32202. [PMID: 38947430 PMCID: PMC11214378 DOI: 10.1016/j.heliyon.2024.e32202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Heterogeneous photocatalysis emerges as an exceptionally appealing technological avenue for the direct capture, conversion, and storage of renewable solar energy, facilitating the generation of sustainable and ecologically benign solar fuels and a spectrum of other pertinent applications. Heterogeneous nanocomposites, incorporating Covalent Triazine Frameworks (CTFs), exhibit a wide-ranging spectrum of light absorption, well-suited electronic band structures, rapid charge carrier mobility, ample resource availability, commendable chemical robustness, and straightforward synthetic routes. These attributes collectively position them as highly promising photocatalysts with applicability in diverse fields, including but not limited to the production of photocatalytic solar fuels and the decomposition of environmental contaminants. As the field of photocatalysis through the hybridization of CTFs undergoes rapid expansion, there is a pressing and substantive need for a systematic retrospective analysis and forward-looking evaluation to elucidate pathways for enhancing performance. This comprehensive review commences by directing attention to diverse synthetic methodologies for the creation of composite materials. And then it delves into a thorough exploration of strategies geared towards augmenting performance, encompassing the introduction of electron donor-acceptor (D-A) units, heteroatom doping, defect Engineering, architecture of Heterojunction and optimization of morphology. Following this, it systematically elucidates applications primarily centered around the efficient generation of photocatalytic hydrogen, reduction of carbon dioxide through photocatalysis, and the degradation of organic pollutants. Ultimately, the discourse turns towards unresolved challenges and the prospects for further advancement, offering valuable guidance for the potent harnessing of CTFs in high-efficiency photocatalytic processes.
Collapse
Affiliation(s)
- Shuqi Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yintian Mao
- Hangzhou Environmental Group Company, Hangzhou, China
| | - Jian Yang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Yin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Jun Dong
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Zhen Wang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Lixian Jiang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
6
|
Sun Q, Duan P, Zhang W, Xie Y, Ni X, Zheng J. Floatable Cu 2(OH)PO 4/rGO Aerogel for Full Spectrum Driven Photocatalytic Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11087-11097. [PMID: 38718184 DOI: 10.1021/acs.langmuir.4c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Photocatalytic technology is an attractive option for environmental remediation because of its green and sustainable nature. However, the inefficient utilization of solar energy and powder morphology currently impede its practical application. Here, we designed a floatable photocatalyst by anchoring 0D Cu2(OH)PO4 (CHP) nanoparticles on 2D graphene to construct 0D/2D CHP/reduced graphene oxide (rGO) aerogels. The CHP/rGO aerogels have interconnected mesopores that provide a large surface area, promoting particle dispersion and increasing the number of active sites. Moreover, the optical response of the CHP/rGO aerogel has been significantly expanded to cover the full spectrum of the solar light. Notably, the 20%CHP/rGO aerogel displayed a high degradation rate (k = 0.178 min-1) taking methylene blue (MB) as a model pollutant under light irradiation (λ > 420 nm). The enhanced photocatalytic activity is ascribed to the rapid electron transfer in the CHP/rGO heterostructures, as supported by the DFT theoretical calculations. Our research highlights the utilization of full spectrum responsive photocatalysts for the elimination of organic pollutants from wastewater under solar light irradiation, as well as the potential for catalyst recovery using floatable aerogels to meet industrial requirements.
Collapse
Affiliation(s)
- Qiaomei Sun
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Pengjun Duan
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Wenqing Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Yuxuan Xie
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Xiang Ni
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| | - Jianzhong Zheng
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 21186, China
| |
Collapse
|
7
|
Zhang W, Wang B, Cui H, Wan Q, Yi B, Yang H. Unveiling the exciton dissociation dynamics steered by built-in electric fields in conjugated microporous polymers for photoreduction of uranium (VI) from seawater. J Colloid Interface Sci 2024; 662:377-390. [PMID: 38359502 DOI: 10.1016/j.jcis.2024.02.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Developing highly efficient photocatalysts based on conjugated microporous polymers (CMPs) are often impeded by the intrinsically large exciton binding energy and sluggish charge transfer kinetics that result from their vulnerable driving force. Herein, a family of pyrene-based nitrogen-implanted CMPs were constructed, where the nitrogen gradient was regulated. Accordingly, the built-in electric field endowed by the nitrogen gradient dramatically accelerates the dissociation of exciton into free carriers, thereby enhancing charge separation efficiency. As a result, PyCMP-3N generated by polymerization of 1,3,6,8-tetrakis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrene and 2,4,6-tris(4-bromophenyl)-1,3,5-triazine featured an optimized built-in electric field and exhibited the highest photocatalytic removal efficiency of uranium (VI) (99.5 %). Our proposed strategy not only provides inspiration for constructing the built-in electric field by controlling nitrogen concentration gradients, but also offers an in-depth understanding the crucial role of built-in electric field in exciton dissociation and charge transfer, efficiently promoting CMPs photocatalysis.
Collapse
Affiliation(s)
- Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Bingxin Wang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Haishuai Cui
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Quan Wan
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Bing Yi
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Hai Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China.
| |
Collapse
|
8
|
Zhao X, Shang S, Liu H, Peng C, Hu J. Dipole moment regulation for enhancing internal electric field in covalent organic frameworks photocatalysts. CHEMOSPHERE 2024; 356:141947. [PMID: 38599332 DOI: 10.1016/j.chemosphere.2024.141947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Covalent organic frameworks (COFs) have recently emerged as a kind of promising photocatalytic platform in addressing the growing threat of trace pollutants in aquatic environments. Along this, we propose a strategy of constructing internal electric field (IEF) in COFs through the dipole moment regulation, which intrinsically facilitates the separation and transfer of photogenerated excitons. Two COFs of BTT-TZ-COF and BTT-TB-COF are developed by linking the electron-donor of benzotrithiophene (BTT) block and the electron-acceptor of triazine (TZ) or tribenzene (TB) block, respectively. DFT calculations demonstrate TZ block with larger dipole moment can achieve more efficient IEF due to the stronger electron-attractive force and hence narrower bandgap. Moreover, featuring the highly-order crystalline structure for accelerating photo-excitons transfer and rich porosity for facilitating the adsorption, BTT-TZ-COF exhibited an excellent universal performance of photocatalytic degradations of various dyes. Specifically, a superior photodegradation efficiency of 99% Rhodamine B (RhB) is achieved within 20 min under the simulated sunlight. Therefore, this convenient construction approach of enhanced IEF in COFs through rational regulation of the dipole moment can be a promising way to realize high photocatalytic activity.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shuaishuai Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Changjun Peng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jun Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|