1
|
Liu YT, Yan BF, Cai X, Zheng HX, Qiu RL, Tang YT. Foliar-applied zinc promotes cadmium allocation from leaf surfaces to grains in rice. J Environ Sci (China) 2025; 151:582-593. [PMID: 39481964 DOI: 10.1016/j.jes.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 11/03/2024]
Abstract
The accumulation of Cd by rice poses significant health risks. Foliar fertilization with Zn can reduce grain Cd contents in rice grown in Cd-contaminated soils. However, atmospheric deposition on leaves is another vector of Cd contamination, and it remains unclear how Zn application affects the allocation of such Cd. We conducted an experiment where the flag leaves of rice plants were treated with solutions with various Zn concentrations and a constant Cd concentration. The 111Cd stable isotope was used to trace the flux of foliar-applied Cd. Higher levels of foliar-applied Zn enhanced Cd efflux and grain allocation. This is attributed to limited sequestration of foliar-applied Cd in the leaf cell symplasm and increased Cd desorption from leaf cell walls when a high Zn2+ concentration occurs in the apoplast. Nonionic Zn oxide nanoparticles mitigated these effects. Additionally, the expressions of OsLCT1 and OsZIP7 in flag leaves and OsHMA2 and OsZIP7 in the uppermost nodes were upregulated under high-Zn2+ treatment, which may facilitate Cd phloem loading and grain allocation. Caution is advised in using foliar Zn in areas with high atmospheric Cd due to potential grain-contamination risks.
Collapse
Affiliation(s)
- Ya-Ting Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo-Fang Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Xuan Cai
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hong-Xiang Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Liu H, Rong X, Zhao H, Xia R, Li M, Wang H, Cui H, Wang X, Zhou J. Bioaccumulation of Atmospherically Deposited Cadmium in Soybean: Three-Year Field Experiment Combined with Cadmium Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17703-17716. [PMID: 39317642 DOI: 10.1021/acs.est.4c07961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Atmospheric deposition plays a significant role in introducing cadmium (Cd) into agroecological systems; however, accurately determining its accumulation in crops through foliar and root uptake presents challenges. This study investigated the bioaccumulation of atmospherically deposited Cd in soybean using a three-year fully factorial atmospheric exposure experiment incorporating Cd isotope analysis. Results shown that atmospheric deposition accounted for 1-13% of soil Cd pools, yet contributed 11-72% of Cd to soybean tissues during the growing seasons. Over the course of soil exposure to atmospheric deposition ranging from 1 to 3 years, no notable variations were observed in Cd concentrations in soil solutions and soybean tissues, nor in isotope ratios. Newly deposited Cd was a major source in soybean plants, and the bioavailability of deposited Cd rapidly aged in soils. Atmospheric Cd enriched in lighter isotopes induced negative isotope shifts in soybean plants. By employing an optimized isotope mixing model in conjunction with a mass balance approach, foliar Cd uptake contributed 13-51%, 16-45%, and 21-56% to stem, leaf, and seed, respectively. This study highlights substantial contribution of foliar uptake of atmospheric deposition to Cd levels in soybean and controlling foliar uptake as a potential strategy in agroecological systems experiencing high atmospheric Cd deposition.
Collapse
Affiliation(s)
- Hailong Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
| | - Xiuting Rong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Huan Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Haotian Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, P.R. China
| | - Xiaozhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
3
|
Zhou J, Xia R, Landis JD, Sun Y, Zeng Z, Zhou J. Isotope Evidence for Rice Accumulation of Newly Deposited and Soil Legacy Cadmium: A Three-Year Field Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17283-17294. [PMID: 39066705 DOI: 10.1021/acs.est.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Biogeochemical processes of atmospherically deposited cadmium (Cd) in soils and accumulation in rice were investigated through a three-year fully factorial atmospheric exposure experiment using Cd stable isotopes and diffusive gradients in thin films (DGT). Our results showed that approximately 37-79% of Cd in rice grains was contributed by atmospheric deposition through root and foliar uptake during the rice growing season, while the deposited Cd accounted for a small proportion of the soil pools. The highly bioavailable metals in atmospheric deposition significantly increased the soil DGT-measured bioavailable fraction; yet, this fraction rapidly aged following a first-order exponential decay model, leading to similar percentages of the bioavailable fraction in soils exposed for 1-3 years. The enrichment of light Cd isotopes in the atmospheric deposition resulted in a significant shift toward lighter Cd isotopes in rice plants. Using a modified isotopic mass balance model, foliar and root uptake of deposited Cd accounted for 47-51% and 28-36% in leaves, 41-45% and 22-30% in stems, and 45-49% and 26-30% in grains, respectively. The implications of this study are that new atmospheric deposition disproportionately contributes to the uptake of Cd in rice, and managing emissions thus becomes very important versus remediation of impacted soils.
Collapse
Affiliation(s)
- Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joshua D Landis
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yufang Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhen Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Dong Q, Xiao C, Cheng W, Yu H, Liu G, Liu Y, Guo Y, Liang Y, Shi J, Yin Y, Cai Y, Jiang G. Phytoavailability, translocation, and accompanying isotopic fractionation of cadmium in soil and rice plants in paddy fields. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135321. [PMID: 39068886 DOI: 10.1016/j.jhazmat.2024.135321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Rice consumption is a major pathway for human cadmium (Cd) exposure. Understanding Cd behavior in the soil-rice system, especially under field conditions, is pivotal for controlling Cd accumulation. This study analyzed Cd concentrations and isotope compositions (δ114/110Cd) in rice plants and surface soil sampled at different times, along with urinary Cd of residents from typical Cd-contaminated paddy fields in Youxian, Hunan, China. Soil water-soluble Cd concentrations varied across sampling times, with δ114/110Cdwater lighter under drained than flooded conditions, suggesting supplementation of water-soluble Cd by isotopically lighter Cd pools, increasing Cd phytoavailability. Both water-soluble Cd and atmospheric deposition contributed to rice Cd accumulation. Water-soluble Cd's contribution increased from 28-52% under flooded to 58-87% under drained conditions due to increased soil Cd phytoavailability. Atmospheric deposition's contribution (12-72%) increased with potential atmospheric deposition flux among sampling areas. The enrichment of heavy Cd isotopes occurred from root-stem-grain to prevent rice Cd accumulation. The different extent of enrichment of heavy isotopes in urine indicated different Cd exposure sources. These findings provide valuable insights into the speciation and phytoavailability changes of Cd in the soil-rice system and highlight the potential application of Cd isotopic fingerprinting in understanding the environmental fate of Cd.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Cailing Xiao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenhan Cheng
- School of Resource & Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huimin Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Yong Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Tian K, Liang Q, He Y, Ma J, Zhao T, Wu Q, Hu W, Huang B, Khan KS, Teng Y. Quantitative assessment of Cd sources in rice grains through Cd isotopes and MixSIAR model in a typical e-waste dismantling area of Southeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176217. [PMID: 39276999 DOI: 10.1016/j.scitotenv.2024.176217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Identification of Cd sources and quantification of their contribution to rice grain Cd is crucial for controlling accumulation of this toxic metal in rice grains. However, accurate assessment of the contribution of different Cd sources to grain Cd concentration in rice under actual field conditions is a challenge. In this study, we determined Cd concentration and their isotopic compositions in rice grains with respect to three potential Cd sources around an e-waste dismantling area in Taizhou City, Zhejiang Province, China. Results demonstrated that average Cd concentrations in grains, surface soils, atmospheric deposition and surface water were 0.32, 0.91, 1.99 mg kg-1 and 2.02 μg L-1, respectively. The δ114/110Cd values of grains, surface soils, surface water and atmospheric deposition ranged from 0.00 ‰ to 0.31 ‰, -0.21 ‰ to 0.14 ‰, -0.04 ‰ to 0.47 ‰, and - 0.25 ‰ to -0.18 ‰, respectively. The MixSIAR model indicated that contribution of soils, irrigation water and atmospheric deposition to grain Cd was 56.8 %, 24.8 % and 18.4 %, respectively, demonstrating soils as the major source of grain Cd in the study area. This study also highlighted significant contribution of irrigation water and atmospheric deposition to Cd concentration in rice grains. The Cd isotopic analysis provides a practical approach for source apportionment of grain Cd and data support for controlling Cd accumulation in rice around the e-waste dismantling area.
Collapse
Affiliation(s)
- Kang Tian
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiang Liang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yue He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China
| | - Jingxuan Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Tiantian Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qiumei Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wenyou Hu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Biao Huang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Khalid Saifullah Khan
- Institute of Soil and Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Ying Teng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
6
|
Ouyang Q, Liu N, Fan Z, Li F, Ge F. The chelation mechanism of neonicotinoid insecticides influencing cadmium transport and accumulation in rice at different growth stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173257. [PMID: 38761944 DOI: 10.1016/j.scitotenv.2024.173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The combined exposure of heavy metals and organic contaminates can influence the transport and accumulation of heavy metals within the soil-rice system. However, the underlying mechanisms of this process remain largely unknown. Herein, this study investigated the influence of three neonicotinoid insecticides (NIs), including imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (THI), on the Cd transport and accumulation in rice (Oryza sativa) at different growth stages. Particular focus lied on their complex interaction and key genes expression involved in Cd transport. Results showed that the interaction between Cd and NIs was the dominant factor affecting Cd transport and accumulation in rice exposed to NIs. All three NIs chelated with Cd with nitrogen (N) on the IMI and THI nitro groups, and the N on the CLO nitro guanidine group. Interestingly, this chelation behavior varied between the tillering stage and the filling/ripening stages, resulting in diverse patterns of Cd accumulation in rice tissues. During the tillering stage, all three NIs considerably inhibited Cd bioavailability and transport to the above-ground part, lowering Cd content in the stem and leaf. The inhibition was increased with stronger chelation ability in the order of IMI (-0.46 eV) > CLO (-0.41 eV) > THI (-0.11 eV), with IMI exhibiting the highest binding energy for Cd and reducing Cd transfers from root to stem by an impressive 94.49 % during the tillering stage. Conversely, during the filling/ripening stages, NIs facilitated Cd accumulation in rice roots, stems, leaves, and grains. This was mainly attributed to the generation of nitrate ions and the release of Cd2+ during the chelation between Cd and NIs under drainage condition. These findings provide theoretical basis for the treatment of combined contamination in field and deep insights into understanding the interaction of organic contaminants with heavy metals in rice culture process.
Collapse
Affiliation(s)
- Qiongfang Ouyang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China
| | - Zhaoxia Fan
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China.
| |
Collapse
|
7
|
Yu P, Shao X, Wang M, Zhu Z, Tong Z, Peng J, Deng Y, Huang Y. Effects of atmospheric deposition on heavy metal contamination in paddy field systems under different functional areas in ChangZhuTan, Hunan Province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172953. [PMID: 38734112 DOI: 10.1016/j.scitotenv.2024.172953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
In recent decades, the problem of heavy metal contamination in rice paddies has attracted widespread attention. However, most studies on heavy metal contamination in paddy fields are biased towards soil and/or rice plants, without taking atmospheric deposition into account. In this study, atmospheric deposition, paddy soil, and rice samples were collected from three functional areas (area proximity to factories, along the roadside, and suburban) in ChangZhuTan, Hunan Province. The pollution characterization, translocation, and health risk of heavy metals were reassessed. The findings revealed that Cd and As contamination in the study area's soils was more severe, with point exceedance rates reaching 70 % and 35.9 %, respectively. The highest concentrations of As, Ni, Cd, and Pb in atmospheric deposition were found along the roadside, with 1.42 μg/m2/day, 3.21 μg/m2/day, 0.34 μg/m2/day, and 8.28 μg/m2/day, respectively. In area proximity to factories, As and Ni in atmospheric deposition showed to be lowest, whereas Cd and Pb concentrations showed lowest in suburban areas. Furthermore, the accumulation of Cd and Pb in rice grains in regions proximity to factories was significantly higher than in other regions. The human health risk assessment indicated the health risk caused by rice intake in areas proximity to factories was the highest and requires attention, which was mainly due to Cd accumulation, with HQ value reached 3.19. Correlation tests indicate that atmospheric deposition has a positive effect on heavy metal enrichment in rice grains. Further Random Forest analysis revealed that the transport of heavy metals from atmospheric deposition to leaves and shells were important influencing factors for As, Cd, Ni and Mg accumulation in rice grain. Therefore, more attention should be paid to the effects of atmospheric deposition on the accumulation of heavy metals in paddy fields in order to maintain the production safety of crops.
Collapse
Affiliation(s)
- Pengyue Yu
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Xingyuan Shao
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Maodi Wang
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Zhen Zhu
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Zhenglong Tong
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Jianwei Peng
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Yaocheng Deng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China.
| | - Ying Huang
- National Engineering Laboratory of High Efficient Use on Soil and Fertilizer, College of Resources, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
8
|
Yang H, Zhou J, Zhou J. Interactive effects of ammonium sulfate and lead on alfalfa in rare earth tailings: Physiological responses and toxicity thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174439. [PMID: 38971260 DOI: 10.1016/j.scitotenv.2024.174439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Dong Q, Xiao C, Cheng W, Yu H, Liu J, Liu G, Liu Y, Guo Y, Liang Y, Shi J, Yin Y, Cai Y, Jiang G. Revealing the Sources of Cadmium in Rice Plants under Pot and Field Conditions from Its Isotopic Fractionation. ACS ENVIRONMENTAL AU 2024; 4:162-172. [PMID: 38765061 PMCID: PMC11100327 DOI: 10.1021/acsenvironau.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 05/21/2024]
Abstract
The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ114/110Cd of Ca(NO3)2-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ114/110Cd of the water-soluble fraction varied considerably from -0.88 to -0.27%, similar to those observed in whole rice plant [Δ114/110Cdplant-water ≈ 0 (-0.06 to -0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ114/110Cdplant-water found in field conditions (-0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.
Collapse
Affiliation(s)
- Qiang Dong
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- BNU-HKUST
Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Cailing Xiao
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Wenhan Cheng
- School
of
Resource & Environment, Anhui Agricultural
University, Hefei 230036, China
| | - Huimin Yu
- CAS
Key Laboratory of Crust-Mantle Materials and Environments, School
of Earth and Space Sciences, University
of Science and Technology of China, Hefei 230026, China
| | - Juan Liu
- School
of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangliang Liu
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Yanwei Liu
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yingying Guo
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yong Liang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianbo Shi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- School
of Environment, Hangzhou Institute for Advanced
Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory
of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- Department
of Chemistry and Biochemistry, Florida International
University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Cui H, Zhao Y, Hu K, Xia R, Zhou J, Zhou J. Impacts of atmospheric deposition on the heavy metal mobilization and bioavailability in soils amended by lime. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170082. [PMID: 38220003 DOI: 10.1016/j.scitotenv.2024.170082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Atmospheric deposition is an important source of heavy metal in agricultural soils, but there is limited research on the mobility of these metals in soil and their impact on soil amendment. Here, we performed a dust incubation experiment in soils in the laboratory and a factorial transplant experiment at three field sites with a gradient of atmospheric deposition to examine the impacts of atmospherically deposited heavy metals (Cu, Cd, and Pb) on the mobility and bioavailability in soils with and without lime applications. Results showed that the atmospherically deposited heavy metals showed high mobility and were primarily presented in the soluble ionic fractions in the wet part and acid-exchangeable and reducible fractions in the dry part of atmospheric deposition. Atmospheric dust addition caused the 2p3/2 and 2p1/2 electrons of Cu atoms in uncontaminated soils to transition the 3d vacant states, resulting in similar copper absorption peaks as atmospheric particles by the observation of X-ray absorption near-edge spectroscopy (XANES). In the field, atmospheric deposition can only increase the mobile fractions in the surface soils, but not in the deeper layers. However, the deposition can increase the soluble and diffusive gradients in thin films (DGT)-measured bioavailable fractions in profile along with the soil depth. Lime applications cannot significantly reduce the mobile fractions of heavy metals in the surface soils exposed to atmospheric deposition, but significantly reduce the heavy metal concentrations in soil solutions and the DGT-measured bioavailable concentrations, particularly in the deeper layer (6-10 cm). The major implication is that atmospherically deposited heavy metals can significantly increase their bioavailable concentrations in the plough horizon of soil and constrain the effects of soil amendments on heavy metal immobilization, thereby increasing the risks of crop uptake.
Collapse
Affiliation(s)
- Hongbiao Cui
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yingjie Zhao
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Kaixin Hu
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ruizhi Xia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Li A, Kong L, Peng C, Feng W, Zhang Y, Guo Z. Predicting Cd accumulation in rice and identifying nonlinear effects of soil nutrient elements based on machine learning methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168721. [PMID: 38008332 DOI: 10.1016/j.scitotenv.2023.168721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
The spatial mismatch of Cd content in soil and rice causes difficulties in environmental management for paddy soil. To investigate the influence of soil environment on the accumulation of Cd in rice grain, we conducted a paired field sampling in the middle of the Xiangjiang River basin, examining the relationships between soil properties, soil nutrient elements, Cd content, plant uptake factor (PUFCd), and translocation factors in different rice organs (root, shoot, and grain). The total soil Cd (CdT) and available Cd (CdA) contents and PUFCd showed large spatial variability with ranges of 0.31-6.19 mg/kg, 0.03-3.07 mg/kg, and 0.02-3.51, respectively. Soil pH, CdT, CdA, and the contents of soil nutrient elements (Mg, Mn, Ca, P, Si, and B) were linearly correlated with grain Cd content (Cdg) and PUFCd. The decision tree analysis identified nonlinear effects of Si, Zn and Fe on rice Cd accumulation, which suggested that low Si and high Zn led to high Cdg, and low Si and Fe caused high PUFCd. Using the soil nutrient elements as predictor variables, random forest models successfully predicted the Cdg and PUFCd and performed better than multiple linear regressions. It suggested the impacts of soil nutrient elements on rice Cd accumulation should receive more attention.
Collapse
Affiliation(s)
- Aoxue Li
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Linglan Kong
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Chi Peng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| | - Wenli Feng
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yan Zhang
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| |
Collapse
|
12
|
Xiao Y, Luan H, Lu S, Xing M, Guo C, Qian R, Xiao X. Toxic effects of atmospheric deposition in mining areas on wheat seedlings. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:69. [PMID: 38342840 DOI: 10.1007/s10653-024-01869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/13/2024]
Abstract
Storage and transportation of coal, as well as operation of coal-fired power plants, produce amounts of metallic exhaust that may lead to different atmospheric environment in the overlapped areas of farmland and coal resource (OAFCR) environment. To investigate the effects of different atmospheric environment in the OAFCR region (north of Xuzhou) on wheat seedlings (AK-58), a box experiment was conducted and compared to an area far from the OAFCR (south of Xuzhou). The study revealed that (1) compared to the southern suburb of Xuzhou, the fresh and dry weight, activities of photosynthetic enzymes and POD of wheat seedlings in the OAFCR reduced obviously. (2) Significantly higher levels of Cr, Cd, Pb, Zn, and Cu were found in the shoots and roots of wheat seedlings in the OAFCR, with lower transfer factor for heavy metals (except Cd and As) in comparison to those in the southern suburb. And the bioconcentration factors of heavy metals (except As) in wheat seedlings in the OAFCR were significantly higher. (3) Nearly 90% of heavy metals (Pb, Cu, Cd, Zn, and Cr) absorbed by wheat were stored in cell walls and soluble fractions, with significantly higher contents of Cu and Cr in wheat seedlings' cell walls and higher contents of Pb, Zn, and Cd in soluble components found in the OAFCR. Our results showed that atmospheric deposition in the mining area has a certain toxic effect on wheat seedlings, and this study provides a theoretical basis for OAFCR crop toxicity management.
Collapse
Affiliation(s)
- Yu Xiao
- School of Environment and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Huijun Luan
- Geological Survey of Anhui Province (Anhui Institute of Geological Sciences), Hefei, 230001, Anhui, China
| | - Shougan Lu
- Jiangsu Founder Environmental Protection Group Co., Ltd, Xuzhou, 221132, Jiangsu, China
| | - Mingjie Xing
- Tianjin Huankeyuan Environmental Science and Technology Co., Ltd, Tianjin, 300457, China
| | - Chunying Guo
- School of Environment and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, China
| | - Ruoxi Qian
- Department of Mathematical and Computational Sciences, University of Toronto, Toronto, L5B 4P2, Canada
| | - Xin Xiao
- School of Environment and Spatial Informatics, China University of Mining and Technology, No.1 Daxue Road, Xuzhou, 221116, Jiangsu, China.
- Observation and Research Station of Jiangsu Jiawang Resource Exhausted Mining Area Land Restoration and Ecological Succession, Ministry of Education, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|