1
|
Shan G, Qian X, Chen X, Feng X, Cai M, Yang L, Chen M, Zhu L, Zhang S. Legacy and emerging per- and poly-fluoroalkyl substances in surface seawater from northwestern Pacific to Southern Ocean: Evidences of current and historical release. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125049. [PMID: 33453666 DOI: 10.1016/j.jhazmat.2021.125049] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/11/2020] [Accepted: 01/03/2021] [Indexed: 05/20/2023]
Abstract
Knowledge on distribution of per- and poly-fluoroalkyl substances (PFASs) in open oceans is limited. By taking part in the 32nd Chinese Antarctic Research Expedition, 41 surface seawater samples were collected in the northwestern Pacific Ocean (NW-PO), eastern Indian Ocean (E-IO) and Southern Ocean (SO), and 23 PFASs comprised of legacy perfluoroalkyl carboxylic acids, perfluoroalkyl sulfonate acids and some new emerging homologs such as 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) were measured. The concentrations of the total PFASs decreased in the order of NW-PO>E-IO>SO. Perfluorooctanoic acid (PFOA) was the most dominant, followed by perfluorooctane sulfonate (PFOS). The PFOA concentration declined exponentially with the offshore distance, while such trend was not obvious for PFOS and other legacy PFASs, suggesting that PFOA was mainly derived from the ongoing land-based emissions, while PFOS was mainly from historical residues. 6:2 Cl-PFESA was identified (<11.1-170 pg/L) in the oceanic waters with relatively high level at the sites near Australia. Multiple receptor models indicated that PFASs in the SO were mainly contributed by atmosphere input, while those in the NW-PO and E-IO were originated from land sources. Isomeric profiles of PFOA showed that telomere-based source became more outstanding than electrochemical fluorinated production in recent years.
Collapse
Affiliation(s)
- Guoqiang Shan
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiang Qian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xin Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuemin Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Minghong Cai
- SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, China
| | - Liping Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Chen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | | |
Collapse
|
2
|
Yamazaki E, Taniyasu S, Wang X, Yamashita N. Per- and polyfluoroalkyl substances in surface water, gas and particle in open ocean and coastal environment. CHEMOSPHERE 2021; 272:129869. [PMID: 33592511 DOI: 10.1016/j.chemosphere.2021.129869] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
A simultaneous sampling of atmospheric and seawater samples was performed in the Taiwan Western Strait, western Arctic Ocean, and the Antarctic Ocean. Analysis of both particle and gas phase PFAS in oceanic air was conducted using cascade impactor particle fractionator, cryogenic air sampler and activated charcoal fiber sorbent for the first time with application in the Taiwan Western Strait. Mean concentration of Σ12PFAS in surface seawater and atmospheric samples were 1178 pg/L and 24 pg/m3 in the Taiwan Western Strait, 430 pg/L and 6 pg/m3 in the western Arctic Ocean, and 456 pg/L and 3 pg/m3 in the Antarctic Ocean. In oceanic air from the Taiwan Western Strait, fluorotelomer alcohol (FTOH) and the ionic PFAS [perfluoroalkyl sulfonic acid (PFSA) and perfluoroalkyl carboxylic acid (PFCA)] were found in 76% and 7% respectively. Regional comparison of air/water exchange (KAW) and gas-particle (Kp) partition coefficients of PFAS in the oceanic environment indicated potential partitioning of ionic PFAS between surface seawater and oceanic air. These findings highlight the advancement in atmospheric PFAS measurements through combined novel technologies, namely size-fractionated particle sampling with cryogenic air trapping and/or activated charcoal sorption. Correlation between Kp and carbon chain length of PFAS was observed using both hyphenated techniques.
Collapse
Affiliation(s)
- Eriko Yamazaki
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Xinhong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Marine Environmental Science, College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China.
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
3
|
González-Gaya B, Casal P, Jurado E, Dachs J, Jiménez B. Vertical transport and sinks of perfluoroalkyl substances in the global open ocean. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1957-1969. [PMID: 31393489 DOI: 10.1039/c9em00266a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ubiquitous occurrence of perfluoroalkyl substances (PFAS) in the open ocean has been previously documented, but their vertical transport and oceanic sinks have not been comprehensively characterized and quantified at the oceanic scale. During the Malaspina 2010 circumnavigation expedition, 21 PFAS were measured at the surface and at the deep chlorophyll maximum (DCM) in the Atlantic, Indian and Pacific oceans. In this work, we report an extended data set of PFAS dissolved phase concentrations at the DCM. ∑PFAS at the DCM varied from 130 to 11 000 pg L-1, with a global average value of 500 pg L-1. Perfluorooctanesulfonate (PFOS) abundance contributed 39% of ∑PFAS, followed by perfluorodecanoate (PFDA, 17%), and perfluorohexanoate (PFHxA, 12%). The relative contribution of the remaining compounds was below 10%, with perfluorooctanoate (PFOA) contributing only 5% to PFAS measured at the DCM. Estimates of vertical diffusivity, derived from microstructure turbulence observations in the upper (<300 m) water column, allowed the derivation of PFAS eddy diffusive fluxes from concurrent field measurements of eddy diffusivity and PFAS concentrations. The PFAS concentrations at the DCM predicted from an eddy diffusivity model were lower than field-measured concentrations, suggesting a relevant role of other vertical transport mechanisms. Settling fluxes of organic matter bound PFAS (biological pump), oceanic circulation and potential, yet un-reported, biological transformations are discussed.
Collapse
Affiliation(s)
- Belén González-Gaya
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain. and Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain and Department of Analytical Chemistry, Plentzia Marine Station of the University of the Basque Country (EHU/UPV), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Paulo Casal
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Elena Jurado
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain and Engineering Department, La Salle Campus Barcelona, Ramon Llull University (URL), Sant Joan de la Salle, 42, 08022 Barcelona, Catalonia, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Catalonia, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
4
|
Yamazaki E, Taniyasu S, Ruan Y, Wang Q, Petrick G, Tanhua T, Gamo T, Wang X, Lam PKS, Yamashita N. Vertical distribution of perfluoroalkyl substances in water columns around the Japan sea and the Mediterranean Sea. CHEMOSPHERE 2019; 231:487-494. [PMID: 31151008 DOI: 10.1016/j.chemosphere.2019.05.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 05/06/2023]
Abstract
Perfluoroalkyl substances (PFASs) have become an important class of global environmental contaminants, yet their vertical profile in the marine water column is still less understood, especially for the semi-closed seas. In this study, the contamination level and spatial distribution of 8 PFASs were investigated in both surface and vertical water samples from two semi-closed seas, the Japan Sea and the Mediterranean Sea. Similar levels and compositions of PFASs were found between these two seas. The vertical profile of PFASs in the Mediterranean Sea was variable while that was relatively steady in the Japan Sea, probably due to their different pollution sources. The accumulation rate of PFASs from the East China Sea to the Japan Sea was calculated, for which perfluorooctanesulfonic acid and perfluorooctanoic acid were found to have high accumulation potency in both surface and deep water; most of the investigated PFASs were accumulated in the deep water due to the long residence time while they were more likely to escape to the Pacific Ocean in the surface water. This work aimed (i) to study the distribution of PFASs in both surface and vertical water samples in two semi-closed seas, namely the Japan Sea and for the first time the Mediterranean Sea, (ii) to assess the temporal trend in the Japan Sea, and (iii) to firstly investigate the potential transport of PFASs from the East China Sea and Taiwan Strait in order to estimate the inventory of PFASs in whole water mass in the Japan Sea.
Collapse
Affiliation(s)
- Eriko Yamazaki
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China; National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Sachi Taniyasu
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Gert Petrick
- AIMES GmbH, Kösterberg 10, 24238, Selent, Germany; Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Toste Tanhua
- Helmholtz Centre for Ocean Research (GEOMAR), Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Toshitaka Gamo
- Atmosphere & Ocean Research Institute, The University of Tokyo 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| | - Xinhong Wang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China; Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Nobuyoshi Yamashita
- National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| |
Collapse
|
5
|
Ishiyama M, Matsuo Y, Nakai K, Tatsuta N, Nakata H, Mizukawa H, Miyawaki T, Nagasaka H, Someya T, Ueno D. Temporal trends in PCB concentrations in mussels collected from areas affected by the Great East Japan Earthquake and Tsunami. MARINE POLLUTION BULLETIN 2019; 145:81-87. [PMID: 31590837 DOI: 10.1016/j.marpolbul.2019.05.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 06/10/2023]
Abstract
In the Great East Japan Earthquake of 11 March 2011, a magnitude 9.0 earthquake and accompanying tsunami struck the Tohoku region of Japan. The tsunami washed away old equipment containing polychlorinated biphenyls (PCBs) stored in the region's factories, and these PCBs may have leaked out of their casings into the marine environment. In this study, we evaluate marine PCB contamination by comparing mussels collected before (in 2005) and after (June 2011) the tsunami. PCB contamination levels were significantly elevated in mussel samples collected after the tsunami in June 2011 (3 months after the tsunami). This indicates that PCBs (specifically, formulation KC-400) leaked out of old equipment swept away by the tsunami and accumulated in mussels. PCBs were estimated to have an environmental half-life (EHL) in mussels of 4 months. Our results show that an earthquake and subsequent tsunami can cause elevated PCB contamination in the marine environment.
Collapse
Affiliation(s)
| | - Yuki Matsuo
- Graduate School of Agriculture, Saga University, Japan
| | - Kunihiko Nakai
- Department of Development and Environmental Medicine, Graduate School of Medicine, Tohoku University, Japan
| | - Nozomi Tatsuta
- Department of Development and Environmental Medicine, Graduate School of Medicine, Tohoku University, Japan
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, Japan
| | | | | | | | | | - Daisuke Ueno
- Graduate School of Agriculture, Saga University, Japan.
| |
Collapse
|
6
|
Lv X, Sun Y, Ji R, Gao B, Wu J, Lu Q, Jiang H. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media. WATER RESEARCH 2018; 141:251-258. [PMID: 29800833 DOI: 10.1016/j.watres.2018.05.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/28/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Comprehensively understanding the fate and transport of perfluorooctanoic acid (PFOA) in subsurface environment is crucial to assess its environmental impacts. In this work, column experiments were conducted to investigate the effects of physicochemical factors on the retention and transport of 14C-labeled PFOA in saturated sand and limestone porous media. The retention of PFOA in limestone columns was higher than that in sand columns under the same solution chemistry conditions. This can be attributed to that the limestone had less negative zeta-potential and larger specific surface area than the sand. Changes in ionic strength (low to high) and cation type (Na+ to Ca2+) had little influences on the mobility of PFOA in sand porous media, but significantly enhanced the retention of PFOA in limestone porous media. Nearly no PFOA was retained in the sand columns, but relatively high levels of PFOA retention (28.7-48.4%) were achieved in the limestone columns. Higher input concentration resulted in lower PFOA retention in limestone porous media, reflecting the blocking effect of the sorption sites. The blocking effect was insignificant in sand porous media, probably because the experimental conditions were unfavorable for PFOA sorption on sand media. A two-site kinetic retention model effectively simulated both the breakthrough and retention behaviors of the PFOA in the sand and limestone porous media.
Collapse
Affiliation(s)
- Xueyan Lv
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; Shandong Zhengyuan Construction Engineering Co. Ltd, Jinan 250100, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Qiusheng Lu
- Shandong Zhengyuan Construction Engineering Co. Ltd, Jinan 250100, China
| | - Hai Jiang
- Shandong Zhengyuan Construction Engineering Co. Ltd, Jinan 250100, China
| |
Collapse
|
7
|
Zhou Y, Wang T, Li Q, Wang P, Li L, Chen S, Zhang Y, Khan K, Meng J. Spatial and vertical variations of perfluoroalkyl acids (PFAAs) in the Bohai and Yellow Seas: Bridging the gap between riverine sources and marine sinks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:111-120. [PMID: 29554559 DOI: 10.1016/j.envpol.2018.03.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Perfluoroalkyl acids (PFAAs) are being increasingly reported as emerging contaminants in riverine and marine settings. This study investigated the contamination level and spatial distribution of 17 PFAAs within the depth profile of the Bohai and Yellow Seas using newly detected sampling data from 49 sites (June 29 to July 14, 2016). Moreover, the riverine flux of 11 selected PFAAs in 33 rivers draining into the Bohai and Yellow Seas was estimated from previous studies (2002-2014) in order to establish the relationship between riverine sources and marine sinks. The results showed that the Bohai and Yellow Seas were commonly contaminated with PFAAs: total concentrations of PFAAs in the surface, middle, and bottom zones ranged from 4.55 to 556 ng L-1, 4.61-575 ng L-1, and 4.94-572 ng L-1, respectively. The predominant compounds were PFOA (0.55-449 ng L-1), PFBA (<LOQ-34.5 ng L-1), and PFPeA (<LOQ-54.3 ng L-1), accounting for 10.1-87.0%, 5.2-59.5%, and 0.6-68.6% of the total PFAAs, respectively. In general, the ∑PFAA concentrations showed a slightly decreasing trend with sampling depth. Contamination was particularly severe in Laizhou Bay, fed by the Xiaoqing River and an industrial park known for PFAA production. The total riverine PFAA mass flux into the Bohai and Yellow Seas was estimated to be 72.2 t y-1, of which 94.8% was carried by the Yangtze and Xiaoqing Rivers. As the concentration of short-chain PFAAs begins to rise in seawater, further studies on the occurrence and fate of short-chain PFAAs with special focus on effective control measures would be very timely, particularly in the Xiaoqing River and Laizhou Bay.
Collapse
Affiliation(s)
- Yunqiao Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tieyu Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qifeng Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqin Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueqing Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Meng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29205, United States
| | | |
Collapse
|