1
|
Lu Y, Zhu X, Li A, Cheng C, Xiao B, Cui P, Wang Y, Zhou D. Boosted chlorate hydrogenation reduction via continuous atomic hydrogen. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137679. [PMID: 39983652 DOI: 10.1016/j.jhazmat.2025.137679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
Chlorate (ClO3-) is a common toxic oxyanion pollutant from various industrial processes, and hydrogenation reduction of ClO3- by atomic hydrogen (H*) is a promising and effective method. Therefore, more efforts are needed to rationalize the design of catalytic active sites for H2 activation to boost ClO3- hydrogenation reduction. In this work, superior H2 activating capabilities were achieved for efficient ClO3- reduction on a porous graphene-based bimetallic catalyst (RuPd/PG). Edge sites and porosity structures on porous graphene promote the anchoring and confinement of Ru and Pd NPs (Nanoparticles), forming abundant Pd-Ru bonding interfaces and highly dispersed NPs. Based on DFT analysis, the ample Pd-Ru interfaces and highly dispersed Ru NPs are the main active sites, simultaneously boosting H* generation and reactant activation for rapid ClO3- reduction. The defective layer of Ru NPs on the Pd surface provides intermediates with accessibility to the inner Pd NPs, thereby avoiding ClO3- regeneration on Ru. Therefore, ClO3- hydrogenation reduction was significantly enhanced on RuPd/PG with an initial turnover frequency (TOF0) of 27.2 min-1, possessing superior robustness in recycling tests and actual water samples. Undoubtedly, this work provides new insights into H* generation and reactant activation to optimize ClO3- hydrogenation reduction applicable for water treatment.
Collapse
Affiliation(s)
- Yilin Lu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiangdong Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Aodi Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Cheng Cheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Beibei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212013, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Hu Z, Jia Y, Wu Y, Zhang Y. Occurrence and removal technologies of perchlorate in water: A systematic review and bibliometric analysis. CHEMOSPHERE 2024; 364:143119. [PMID: 39154764 DOI: 10.1016/j.chemosphere.2024.143119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The pollution resulting from the emergence of the contaminant perchlorate is anticipated to have a substantial effect on the water environment in the foreseeable future. Considerable research efforts have been devoted to investigating treatment technologies for addressing perchlorate contamination, garnering widespread international interest in recent decades. A systematic review was conducted utilizing the Web of Science, Scopus, and Science Direct databases to identify pertinent articles published from 2000 to 2024. A total of 551 articles were chosen for in-depth examination utilizing VOS viewer. Bibliometric analysis indicated that countries such as China, the United States, Chile, India, Japan, and Korea have been prominent contributors to the research on this topic. The order of ClO4- occurrence was as follows: surface water > groundwater > drinking water. Various remediation methods for perchlorate contamination, such as adsorption, ion-exchange, membrane filtration, chemical reduction, and biological reduction, have been suggested. Furthermore, the research critically evaluated the strengths and weaknesses of each approach and offered recommendations for addressing their limitations. Advanced technologies have shown the potential to achieve notably enhanced removal of perchlorate and co-contaminants from water sources. However, the low concentration of perchlorate in natural water sources and the high energy consumption related to these technologies need to be solved in order to effectively remove perchlorate from water.
Collapse
Affiliation(s)
- Zhihui Hu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yan Jia
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yuan Wu
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| | - Yan Zhang
- Department of Civil Engineering, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China; Key Laboratory of Drinking Water Safety and Distribution Technology of Zhejiang Province, Zhejiang University, 866 Yuhangtang Rd., Hangzhou, 310058, China.
| |
Collapse
|
3
|
Sarkar W, LaDuca A, Wilson JR, Szymczak NK. Iron-Catalyzed C-H Oxygenation Using Perchlorate Enabled by Secondary Sphere Hydrogen Bonds. J Am Chem Soc 2024; 146:10508-10516. [PMID: 38564312 PMCID: PMC11137739 DOI: 10.1021/jacs.3c14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Perchlorate (ClO4-) is a groundwater pollutant that is challenging to remediate. We report a strategy to use Fe(II) tris(2-pyridylmethyl)amine (TPA) complexes featuring appended aniline hydrogen bonds (H-bonds) to promote ClO4- reduction. These complexes facilitate oxygen atom transfer from ClO4- to PPh3 and C-H oxygenation reactions of organic substrates. Catalytic reactions using 15 mol % afforded excellent yields for oxygenation of anthracene and cyclic alkyl aromatics, and this methodology tolerates aryl halides as well as heterocycles containing either O, S, or N.
Collapse
Affiliation(s)
- Writhabrata Sarkar
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Andrew LaDuca
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Jessica R Wilson
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Gao J, Chen G, Fu Q, Ren C, Tan C, Liu H, Wang Y, Liu J. Enhancing Aqueous Chlorate Reduction Using Vanadium Redox Cycles and pH Control. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20392-20399. [PMID: 37976223 DOI: 10.1021/acs.est.3c06519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Chlorate (ClO3-) is a toxic oxyanion pollutant from industrial wastes, agricultural applications, drinking water disinfection, and wastewater treatment. Catalytic reduction of ClO3- using palladium (Pd) nanoparticle catalysts exhibited sluggish kinetics. This work demonstrates an 18-fold activity enhancement by integrating earth-abundant vanadium (V) into the common Pd/C catalyst. X-ray photoelectron spectroscopy and electrochemical studies indicated that VV and VIV precursors are reduced to VIII in the aqueous phase (rather than immobilized on the carbon support) by Pd-activated H2. The VIII/IV redox cycle is the predominant mechanism for the ClO3- reduction. Further reduction of chlorine intermediates to Cl- could proceed via VIII/IV and VIV/V redox cycles or direct reduction by Pd/C. To capture the potentially toxic V metal from the treated solution, we adjusted the pH from 3 to 8 after the reaction, which completely immobilized VIII onto Pd/C for catalyst recycling. The enhanced performance of reductive catalysis using a Group 5 metal adds to the diversity of transition metals (e.g., Cr, Mo, Re, Fe, and Ru in Groups 6-8) for water pollutant treatment via various unique mechanisms.
Collapse
Affiliation(s)
- Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Gongde Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Qi Fu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Cheng Tan
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haizhou Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
5
|
Development of Palladium and Platinum Decorated Granulated Carbon Nanocomposites for Catalytic Chlorate Elimination. Int J Mol Sci 2022; 23:ijms231810514. [PMID: 36142425 PMCID: PMC9500763 DOI: 10.3390/ijms231810514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Granulated carbon nanotube-supported palladium and platinum-containing catalysts were developed. By using these, remarkable catalytic activity was achieved in chlorate ion hydrogenation. Nitrogen-doped bamboo-like carbon nanotubes (N-BCNTs) loaded gel beads were prepared by using Ca2+, Ni2+ or Fe3+ ions as precursors for cross-linking of sodium alginate. The gel beads were carbonized at 800 °C, and these granulated carbon nanocomposites (GCNC) were used as supports to prepare palladium and platinum-containing catalysts. All in all, three catalysts were developed and, in each case, >99 n/n% chlorate conversion was reached in the aqueous phase by using the Pd-Pt containing GCNCs, moreover, these systems retained their catalytic activity even after repeated use.
Collapse
|
6
|
Almassi S, Ren C, Liu J, Chaplin BP. Electrocatalytic Perchlorate Reduction Using an Oxorhenium Complex Supported on a Ti 4O 7 Reactive Electrochemical Membrane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3267-3276. [PMID: 35175742 DOI: 10.1021/acs.est.1c08220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An organometallic rhenium catalyst was deposited on a Ti4O7 reactive electrochemical membrane (Re/REM) for the electrocatalytic reduction of aqueous ClO4- to Cl-. Results showed increasing ClO4- reduction upon increasing cathodic potential (i.e., -0.4 to-1.7 V/SHE). A 5 mM ClO4- solution was reduced by ∼21% in a single pass (residence time ∼0.2 s) through the Re/REM at a pH of 7, with >99% Cl- selectivity and a current efficiency of ∼100%. Kinetic analysis indicated that the reaction rate constant increased from 3953 to 7128 L h-1 gRe-1 at pH values of 9 to 3, respectively, and was mass transport-limited at pH < 5. The rate constants were 2 orders of magnitude greater than reported values for an analogous catalytic system using hydrogen as an electron donor. A continuous flow Re/REM system reduced 1 ppm ClO4- in a groundwater sample by >99.9% for the first 93.5 h, and concentrations were lower than the EPA ClO4- guideline (56 ppb) for 374 h of treatment. The fast ClO4- reduction kinetics and high chloride selectivity without the need for acidic conditions and a continual hydrogen electron donor supply for catalyst regeneration indicate the promising ability of the Re/REM for aqueous electrocatalytic ClO4- treatment.
Collapse
Affiliation(s)
- Soroush Almassi
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
| | - Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 929 W. Taylor Street, Chicago, Illinois 60607, United States
- Institute of Environmental Science and Policy, University of Illinois at Chicago, 1603 W. Taylor Street, Chicago, Illinois 60612, United States
- Department of Civil, Materials, and Environmental Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
7
|
Wang B, Zhai Y, Li S, Li C, Zhu Y, Xu M. Catalytic enhancement of hydrogenation reduction and oxygen transfer reaction for perchlorate removal: A review. CHEMOSPHERE 2021; 284:131315. [PMID: 34323780 DOI: 10.1016/j.chemosphere.2021.131315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Perchlorate is the main contaminant in surface water and groundwater, and it is of current urgency to remove due to its high water solubility, mobility, and endocrine-disrupting properties. The conversion of perchlorate into harmless chloride ions by using appropriate catalysts is the most promising and effective route to overcome its high activation energy and kinetic stability. Perchlorate is usually reduced in two ways: (1) indirect reduction via oxygen atom transfer (OAT) reaction or (2) hydrodeoxygenation through highly active reducing H atoms. This paper discusses the mechanisms underlying both the OAT reaction catalyzed by homogenous rhenium-oxo complexes or biological Mo-based enzymes and the heterogeneous hydrogenation for perchlorate reduction. Particular emphasis is placed on the factors affecting the catalytic process and the synergy between the (1) and (2) reactions. For completeness, the applicability of different electrolysis devices, electrodes, and bioreactors is also illustrated. Finally, this article gives prospects for the synthesis and application of catalysts in different pathways.
Collapse
Affiliation(s)
- Bei Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yunbo Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China.
| | - Shanhong Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Caiting Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, China
| | - Yun Zhu
- College of Electrical and Information Engineering, Hunan University, Changsha, 410082, China
| | - Min Xu
- Chinese Academy for Environmental Planning, Beijing, 100012, China.
| |
Collapse
|
8
|
Ren C, Yang P, Sun J, Bi EY, Gao J, Palmer J, Zhu M, Wu Y, Liu J. A Bioinspired Molybdenum Catalyst for Aqueous Perchlorate Reduction. J Am Chem Soc 2021; 143:7891-7896. [PMID: 34003633 DOI: 10.1021/jacs.1c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perchlorate (ClO4-) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4- reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo-Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4- into Cl- with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon-water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx- substrates reached 165 h-1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4-. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4- for water purification and space exploration.
Collapse
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Peng Yang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jiaonan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric Y Bi
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States.,Martin Luther King High School, Riverside, California 92508, United States
| | - Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jacob Palmer
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
9
|
|
10
|
Ren C, Liu J. Bioinspired Catalytic Reduction of Aqueous Perchlorate by One Single-Metal Site with High Stability against Oxidative Deactivation. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
|
12
|
Hydrogenation of chlorate ions by commercial carbon supported palladium catalysts—a comparative study. REACTION KINETICS MECHANISMS AND CATALYSIS 2020. [DOI: 10.1007/s11144-020-01829-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe chlorate elimination potential of three commercial activated carbon supported 10 wt% palladium catalysts (Cat-I, Cat-II and Cat-III) have been compared in heterogeneous catalytic hydrogenation. The physical–chemical properties of the catalysts were characterized by using high-resolution transmission electron microscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy and ζ potential measurements. Chlorate reduction tests have been carried out by applying the same procedure and conditions in each case. The studied catalysts were active, but Cat-I and Cat-III showed higher activity, and eliminated 93% and 91% of chlorate, respectively. Reuse tests have also been carried out to compare the catalysts. Although Cat-I and Cat-III were shown almost equally high activity in the first cycle, the reuse tests showed that Cat-III could have a better applicability.
Collapse
|
13
|
Ren C, Yang P, Gao J, Huo X, Min X, Bi EY, Liu Y, Wang Y, Zhu M, Liu J. Catalytic Reduction of Aqueous Chlorate With MoOx Immobilized on Pd/C. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changxu Ren
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Peng Yang
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jinyu Gao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Xiangchen Huo
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xiaopeng Min
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Eric Y. Bi
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Martin Luther King High School, Riverside, California 92508, United States
| | - Yiming Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Yin Wang
- Department of Civil and Environmental Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, United States
| | - Mengqiang Zhu
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Jinyong Liu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
14
|
Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5027-5047. [PMID: 29634904 PMCID: PMC6402350 DOI: 10.1021/acs.est.7b06487] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Biochar is the carbon-rich product of the pyrolysis of biomass under oxygen-limited conditions, and it has received increasing attention due to its multiple functions in the fields of climate change mitigation, sustainable agriculture, environmental control, and novel materials. To design a "smart" biochar for environmentally sustainable applications, one must understand recent advances in biochar molecular structures and explore potential applications to generalize upon structure-application relationships. In this review, multiple and multilevel structures of biochars are interpreted based on their elemental compositions, phase components, surface properties, and molecular structures. Applications such as carbon fixators, fertilizers, sorbents, and carbon-based materials are highlighted based on the biochar multilevel structures as well as their structure-application relationships. Further studies are suggested for more detailed biochar structural analysis and separation and for the combination of macroscopic and microscopic information to develop a higher-level biochar structural design for selective applications.
Collapse
Affiliation(s)
- Xin Xiao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
- Corresponding Author: B. Chen. Phone: 0086-571-88982587; fax: 0086-571-88982587;
| | - Zaiming Chen
- Department of Environmental Engineering, Ningbo University, Ningbo 315211, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
15
|
Cho DW, Kwon G, Ok YS, Kwon EE, Song H. Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO 2 as a Reaction Medium. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13142-13150. [PMID: 28362484 DOI: 10.1021/acsami.7b00619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, pyrolysis of lignin impregnated with cobalt (Co) was conducted to fabricate a Co-biochar (i.e., Co/lignin biochar) for use as a catalyst for bromate (BrO3-) reduction. Carbon dioxide (CO2) was employed as a reaction medium in the pyrolysis to induce desired effects associated with CO2; (1) the enhanced thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of biomass, and (2) the direct reaction between CO2 and VOCs, which resulted in the enhanced generation of syngas (i.e., H2 and CO). This study placed main emphases on three parts: (1) the role of impregnated Co in pyrolysis of lignin in the presence of CO2, (2) the characterization of Co/lignin biochar, and (3) evaluation of catalytic capability of Co-lignin biochar in BrO3- reduction. The findings from the pyrolysis experiments strongly evidenced that the desired CO2 effects were strengthened due to catalytic effect of impregnated Co in lignin. For example, the enhanced generation of syngas from pyrolysis of Coimpregnated lignin in CO2 was more significant than the case without Co impregnation. Moreover, pyrolysis of Coimpregnated lignin in CO2 led to production of biochar of which surface area (599 m2 g-1) is nearly 100 times greater than the biochar produced in N2 (6.6 m2 g-1). Co/lignin biochar produced in CO2 also showed a great performance in catalyzing BrO3- reduction as compared to the biochar produced in N2.
Collapse
Affiliation(s)
- Dong-Wan Cho
- Department of Environment and Energy, Sejong University , Seoul 05006, South Korea
| | - Gihoon Kwon
- Department of Environment and Energy, Sejong University , Seoul 05006, South Korea
| | - Yong Sik Ok
- School of Natural Resources and Environmental Science & Korea Biochar Research Center, Kangwon National University , Chuncheon 24341, South Korea
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University , Seoul 05006, South Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University , Seoul 05006, South Korea
| |
Collapse
|
16
|
Liu J, Su X, Han M, Wu D, Gray DL, Shapley JR, Werth CJ, Strathmann TJ. Ligand Design for Isomer-Selective Oxorhenium(V) Complex Synthesis. Inorg Chem 2017; 56:1757-1769. [DOI: 10.1021/acs.inorgchem.6b03076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyong Liu
- Department of Chemical
and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Xiaoge Su
- Department
of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230000, China
| | | | - Dimao Wu
- Department of
Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | - Charles J. Werth
- Department of Civil, Architectural, and Environmental
Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
17
|
Liu J, Han M, Wu D, Chen X, Choe JK, Werth CJ, Strathmann TJ. A New Bioinspired Perchlorate Reduction Catalyst with Significantly Enhanced Stability via Rational Tuning of Rhenium Coordination Chemistry and Heterogeneous Reaction Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5874-5881. [PMID: 27182602 DOI: 10.1021/acs.est.6b00886] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Rapid reduction of aqueous ClO4(-) to Cl(-) by H2 has been realized by a heterogeneous Re(hoz)2-Pd/C catalyst integrating Re(O)(hoz)2Cl complex (hoz = oxazolinyl-phenolato bidentate ligand) and Pd nanoparticles on carbon support, but ClOx(-) intermediates formed during reactions with concentrated ClO4(-) promote irreversible Re complex decomposition and catalyst deactivation. The original catalyst design mimics the microbial ClO4(-) reductase, which integrates Mo(MGD)2 complex (MGD = molybdopterin guanine dinucleotide) for oxygen atom transfer (OAT). Perchlorate-reducing microorganisms employ a separate enzyme, chlorite dismutase, to prevent accumulation of the destructive ClO2(-) intermediate. The structural intricacy of MGD ligand and the two-enzyme mechanism for microbial ClO4(-) reduction inspired us to improve catalyst stability by rationally tuning Re ligand structure and adding a ClOx(-) scavenger. Two new Re complexes, Re(O)(htz)2Cl and Re(O)(hoz)(htz)Cl (htz = thiazolinyl-phenolato bidentate ligand), significantly mitigate Re complex decomposition by slightly lowering the OAT activity when immobilized in Pd/C. Further stability enhancement is then obtained by switching the nanoparticles from Pd to Rh, which exhibits high reactivity with ClOx(-) intermediates and thus prevents their deactivating reaction with the Re complex. Compared to Re(hoz)2-Pd/C, the new Re(hoz)(htz)-Rh/C catalyst exhibits similar ClO4(-) reduction activity but superior stability, evidenced by a decrease of Re leaching from 37% to 0.25% and stability of surface Re speciation following the treatment of a concentrated "challenge" solution containing 1000 ppm of ClO4(-). This work demonstrates the pivotal roles of coordination chemistry control and tuning of individual catalyst components for achieving both high activity and stability in environmental catalyst applications.
Collapse
Affiliation(s)
- Jinyong Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | - Mengwei Han
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Dimao Wu
- Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xi Chen
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jong Kwon Choe
- Department of Civil and Environmental Engineering, Clarkson University , Potsdam, New York 13699, United States
| | - Charles J Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Timothy J Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| |
Collapse
|
18
|
Liu J, Wu D, Su X, Han M, Kimura SY, Gray DL, Shapley JR, Abu-Omar MM, Werth CJ, Strathmann TJ. Configuration Control in the Synthesis of Homo- and Heteroleptic Bis(oxazolinylphenolato/thiazolinylphenolato) Chelate Ligand Complexes of Oxorhenium(V): Isomer Effect on Ancillary Ligand Exchange Dynamics and Implications for Perchlorate Reduction Catalysis. Inorg Chem 2016; 55:2597-611. [DOI: 10.1021/acs.inorgchem.5b02940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinyong Liu
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dimao Wu
- Department
of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoge Su
- Pure Storage Inc., Mountain View, California 94041, United States
| | | | | | | | | | - Mahdi M. Abu-Omar
- Department of Chemistry and School of Chemical
Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Charles J. Werth
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Timothy J. Strathmann
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|