1
|
Kim NR, Lee HJ. Ambient PM 2.5 exposure and rapid population aging: A double threat to public health in the Republic of Korea. ENVIRONMENTAL RESEARCH 2024; 252:119032. [PMID: 38685298 DOI: 10.1016/j.envres.2024.119032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) can infiltrate deep into the respiratory system, posing significant health risks. Notably, the health burden of PM2.5 is more pronounced among the older adult population. With an aging population, the public health burden attributable to PM2.5 could escalate even if the current PM2.5 level remains stable. This study evaluated the number of deaths attributable to long-term PM2.5 exposure in the Republic of Korea between 2020 and 2050 and identified the PM2.5 concentration required at least to maintain the current PM2.5 health burden. To calculate mortality for 2020-2050, we performed a health impact assessment using 3-year (2019-2021) average population-weighted PM2.5 concentrations, age-specific population and mortality rates. In 2020, 33,578 [95% confidence interval (CI) = 31,708-35,448] deaths were attributable to PM2.5 exposure. Projecting forward, if the 2019-2021 average PM2.5 level remains constant, mortality is projected to be 112,953 (95% CI = 109,963-115,943) in 2050, more than three times higher than in 2020. To maintain the same level of health burden in 2050 as in 2020, the PM2.5 concentration needs to be immediately reduced to 5.8 μg/m3. In an age-specific analysis, the proportion of older adults (ages 65+) to total mortality would increase from 83% (2020) to 96% (2050), indicating that the rising mortality is predominantly driven by the aging population. By region, the reduction of PM2.5 concentrations, which is required immediately in 2020 to have the health burden in 2050 equal to that in 2020, varied from 3.6 μg/m3 in Goheung-gun (25% reduction) to 20.8 μg/m3 in Heungdeok-gu (82% reduction). Our study emphasizes the critical need for air quality management to consider aging populations when establishing PM2.5 air quality standards, as well as their associated policies and regulations.
Collapse
Affiliation(s)
- Na Rae Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea
| | - Hyung Joo Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea; Research and Management Center for Health Risk of Particulate Matter, Seoul, 02481, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
2
|
Ngarambe J, Joen SJ, Han CH, Yun GY. Exploring the relationship between particulate matter, CO, SO 2, NO 2, O 3 and urban heat island in Seoul, Korea. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123615. [PMID: 32771816 DOI: 10.1016/j.jhazmat.2020.123615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Urban environments face two challenging problems that are parallel in nature but yet with compelling potential synergistic interactions; urban heat island (UHI) and air pollution. We explore these interactions using in-situ temperature and air pollution data collected from 13 monitoring stations for nine years. Through regression analysis and analysis of variance (ANOVA) tests, we found that carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM) show positive correlations with UHI intensity (UHII). At the same time, Ozone (O3) was negatively correlated with UHII. Moreover, there was a substantial seasonal effect on the strength of the correlations between UHI and air pollution, with some air pollutants showing strong associations with UHI during certain seasons (i.e., winter and autumn). The strongest interactions were observed for NO2 (R² = 0.176) and PM10 (R² = 0.596) during the wintertime and for SO2 (R² = 0.849), CO (R² = 0.346), PM2.5 (R² = 0.695) and O3 (R² = 0.512) during autumn. Understanding such interactions is essential for urban climate studies and our study provides a basis for scientific discussions on integrative mitigation strategies for both UHI and air pollution in Seoul city.
Collapse
Affiliation(s)
- Jack Ngarambe
- Department of Architectural Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Soo Jeong Joen
- Department of Architectural Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Choong-Hee Han
- Department of Architectural Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Geun Young Yun
- Department of Architectural Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, South Korea.
| |
Collapse
|
3
|
Eck TF, Holben BN, Reid JS, Xian P, Giles DM, Sinyuk A, Smirnov A, Schafer JS, Slutsker I, Kim J, Koo JH, Choi M, Kim KC, Sano I, Arola A, Sayer AM, Levy RC, Munchak LA, O'Neill NT, Lyapustin A, Hsu NC, Randles CA, Da Silva AM, Buchard V, Govindaraju RC, Hyer E, Crawford JH, Wang P, Xia X. Observations of the Interaction and Transport of Fine Mode Aerosols with Cloud and/or Fog in Northeast Asia from Aerosol Robotic Network (AERONET) and Satellite Remote Sensing. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:5560-5587. [PMID: 32661496 PMCID: PMC7356674 DOI: 10.1029/2018jd028313] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/26/2018] [Indexed: 06/10/2023]
Abstract
Analysis of sun photometer measured and satellite retrieved aerosol optical depth (AOD) data has shown that major aerosol pollution events with very high fine mode AOD (>1.0 in mid-visible) in the China/Korea/Japan region are often observed to be associated with significant cloud cover. This makes remote sensing of these events difficult even for high temporal resolution sun photometer measurements. Possible physical mechanisms for these events that have high AOD include a combination of aerosol humidification, cloud processing, and meteorological co-variation with atmospheric stability and convergence. The new development of Aerosol Robotic network (AERONET) Version 3 Level 2 AOD with improved cloud screening algorithms now allow for unprecedented ability to monitor these extreme fine mode pollution events. Further, the Spectral Deconvolution Algorithm (SDA) applied to Level 1 data (L1; no cloud screening) provides an even more comprehensive assessment of fine mode AOD than L2 in current and previous data versions. Studying the 2012 winter-summer period, comparisons of AERONET L1 SDA daily average fine mode AOD data showed that Moderate Resolution Imaging Spectroradiometer (MODIS) satellite remote sensing of AOD often did not retrieve and/or identify some of the highest fine mode AOD events in this region. Also, compared to models that include data assimilation of satellite retrieved AOD, the L1 SDA fine mode AOD was significantly higher in magnitude, particularly for the highest AOD events that were often associated with significant cloudiness.
Collapse
Affiliation(s)
- T F Eck
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - B N Holben
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - J S Reid
- Naval Research Laboratory, Monterey, CA, USA
| | - P Xian
- Naval Research Laboratory, Monterey, CA, USA
| | - D M Giles
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - A Sinyuk
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - A Smirnov
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - J S Schafer
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - I Slutsker
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - J Kim
- Yonsei University, Seoul, South Korea
| | - J-H Koo
- Yonsei University, Seoul, South Korea
| | - M Choi
- Yonsei University, Seoul, South Korea
| | - K C Kim
- Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - I Sano
- Kinki University, Osaka, Japan
| | - A Arola
- Finnish Meteorological Institute, Kuopio, Finland
| | - A M Sayer
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - R C Levy
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - L A Munchak
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | | | - A Lyapustin
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - N C Hsu
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - C A Randles
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - A M Da Silva
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - V Buchard
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Universities Space Research Association, Columbia, MD, USA
| | - R C Govindaraju
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Science Systems Applications, Inc., Lanham, MD, USA
| | - E Hyer
- Naval Research Laboratory, Monterey, CA, USA
| | | | - P Wang
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - X Xia
- LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Nakao M, Ishihara Y, Kim CH, Hyun IG. The Impact of Air Pollution, Including Asian Sand Dust, on Respiratory Symptoms and Health-related Quality of Life in Outpatients With Chronic Respiratory Disease in Korea: A Panel Study. J Prev Med Public Health 2018; 51:130-139. [PMID: 29886708 PMCID: PMC5996190 DOI: 10.3961/jpmph.18.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
Objectives Air pollution is a growing concern in Korea because of transboundary air pollution from mainland China. A panel study was conducted to clarify the effects of air pollution on respiratory symptoms and health-related quality of life (HR-QoL) in outpatients with and without chronic obstructive pulmonary disease (COPD) in Korea. Methods Patients filled out a questionnaire including self-reported HR-QoL in February and were followed up in May and July. The study was conducted from 2013 to 2015, with different participants each year. Air quality parameters were applied in a generalized estimating equation as independent variables to predict factors affecting HR-QoL. Results Lower physical fitness scores were associated with Asian sand dust events. Daily activity scores were worse when there were high concentrations of particulate matter (PM) less than 10 μm in diameter (PM10). Lower social functioning scores were associated with high PM less than 2.5 μm in diameter and nitrogen dioxide (NO2) concentrations. High NO2 concentrations also showed a significant association with mental health scores. Weather-related cough was prevalent when PM10, NO2, or ozone (O3) concentrations were high, regardless of COPD severity. High PM10 concentrations were associated with worsened wheezing, particularly in COPD patients. Conclusions The results suggest that PM, NO2, and O3 cause respiratory symptoms leading to HR-QoL deterioration. While some adverse effects of air pollution appeared to occur regardless of COPD, others occurred more often and more intensely in COPD patients. The public sector, therefore, needs to consider tailoring air pollution countermeasures to people with different conditions to minimize adverse health effects.
Collapse
Affiliation(s)
- Motoyuki Nakao
- Department of Public Health, Kurume University School of Medicine, Kurume, Japan
| | - Yoko Ishihara
- Department of Public Health, Kurume University School of Medicine, Kurume, Japan
| | - Cheol-Hong Kim
- Department of Internal Medicine, Respiratory Health Center, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| | - In-Gyu Hyun
- Department of Internal Medicine, Respiratory Health Center, Hallym University Dongtan Sacred Heart Hospital, Hwaseong, Korea
| |
Collapse
|