1
|
Pan Z, Loreggian L, Roebbert Y, Bartova B, Hunault MOJ, Weyer S, Bernier-Latmani R. Pentavalent U Reactivity Impacts U Isotopic Fractionation during Reduction by Magnetite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6595-6604. [PMID: 38573735 PMCID: PMC11025122 DOI: 10.1021/acs.est.3c10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.
Collapse
Affiliation(s)
- Zezhen Pan
- Department
of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- EML,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institute
of Eco-Chongming (IEC), Shanghai 200062, China
| | - Luca Loreggian
- EML,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Yvonne Roebbert
- Institut
für Mineralogie, Leibniz Universität
Hannover, D-30167 Hannover, Germany
| | - Barbora Bartova
- EML,
École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | | | - Stefan Weyer
- Institut
für Mineralogie, Leibniz Universität
Hannover, D-30167 Hannover, Germany
| | | |
Collapse
|
2
|
Liu Z, Li C, Tan K, Li Y, Tan W, Li X, Zhang C, Meng S, Liu L. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161033. [PMID: 36574851 DOI: 10.1016/j.scitotenv.2022.161033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42-, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from -0.07 ‰ to 0.09 ‰ in the post-mining site and from -1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994-0.9997 for uranium and 1.0032-1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China.
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yongmei Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wanyu Tan
- Hunan City University, Yiyang 413000, PR China
| | - Xiqi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chong Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Beijing Research Institute of Chemical Engineering Metallurgy, Beijing 101149, PR China
| | - Shuo Meng
- R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China
| | - Longcheng Liu
- China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China; Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang. NUCLEAR ENGINEERING AND TECHNOLOGY 2022. [DOI: 10.1016/j.net.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Restoration Insights Gained from a Field Deployment of Dithionite and Acetate at a Uranium In Situ Recovery Mine. MINERALS 2022. [DOI: 10.3390/min12060711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mining uranium by in situ recovery (ISR) typically involves injecting an oxidant and a complexing agent to mobilize and extract uranium in a saturated ore zone. This strategy involves less infrastructure and invasive techniques than traditional mining, but ISR often results in persistently elevated concentrations of U and other contaminants of concern in groundwater after mining. These concentrations may remain elevated for an extended period without remediation. Here, we describe a field experiment at an ISR facility in which both a chemical reductant (sodium dithionite) and a biostimulant (sodium acetate) were sequentially introduced into a previously mined ore zone in an attempt to establish reducing geochemical conditions that, in principle, should decrease and stabilize aqueous U concentrations. While several lines of evidence indicated that reducing conditions were established, U concentrations did not decrease, and in fact increased after the amendment deployments. We discuss likely reasons for this behavior, and we also discuss how the results provide insights into improvements that could be made to the restoration process to benefit from the seemingly detrimental behavior.
Collapse
|
5
|
Vengosh A, Coyte RM, Podgorski J, Johnson TM. A critical review on the occurrence and distribution of the uranium- and thorium-decay nuclides and their effect on the quality of groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151914. [PMID: 34856287 DOI: 10.1016/j.scitotenv.2021.151914] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
This critical review presents the key factors that control the occurrence of natural elements from the uranium- and thorium-decay series, also known as naturally occurring radioactive materials (NORM), including uranium, radium, radon, lead, polonium, and their isotopes in groundwater resources. Given their toxicity and radiation, elevated levels of these nuclides in drinking water pose human health risks, and therefore understanding the occurrence, sources, and factors that control the mobilization of these nuclides from aquifer rocks is critical for better groundwater management and human health protection. The concentrations of these nuclides in groundwater are a function of the groundwater residence time relative to the decay rates of the nuclides, as well as the net balance between nuclides mobilization (dissolution, desorption, recoil) and retention (adsorption, precipitation). This paper explores the factors that control this balance, including the relationships between the elemental chemistry (e.g., solubility and speciation), lithological and hydrogeological factors, groundwater geochemistry (e.g., redox state, pH, ionic strength, ion-pairs availability), and their combined effects and interactions. The various chemical properties of each of the nuclides results in different likelihoods for co-occurrence. For example, the primordial 238U, 222Rn, and, in cases of high colloid concentrations also 210Po, are all more likely to be found in oxic groundwater. In contrast, in reducing aquifers, Ra nuclides, 210Pb, and in absence of high colloid concentrations, 210Po, are more mobile and frequently occur in groundwater. In highly permeable sandstone aquifers that lack sufficient adsorption sites, Ra is often enriched, even in low salinity and oxic groundwater. This paper also highlights the isotope distributions, including those of relatively long-lived nuclides (238U/235U) with abundances that depend on geochemical conditions (e.g., fractionation induced from redox processes), as well as shorter-lived nuclides (234U/238U, 228Ra/226Ra, 224Ra/228Ra, 210Pb/222Rn, 210Po/210Pb) that are strongly influenced by physical (recoil), lithological, and geochemical factors. Special attention is paid in evaluating the ability to use these isotope variations to elucidate the sources of these nuclides in groundwater, mechanisms of their mobilization from the rock matrix (e.g., recoil, ion-exchange), and retention into secondary mineral phases and ion-exchange sites.
Collapse
Affiliation(s)
| | | | - Joel Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | |
Collapse
|
6
|
You W, Peng W, Tian Z, Zheng M. Uranium bioremediation with U(VI)-reducing bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149107. [PMID: 34325147 DOI: 10.1016/j.scitotenv.2021.149107] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Uranium (U) pollution is an environmental hazard caused by the development of the nuclear industry. Microbial reduction of hexavalent uranium (U(VI)) to tetravalent uranium (U(IV)) reduces U solubility and mobility and has been proposed as an effective method to remediate uranium contamination. In this review, U(VI) remediation with respect to U(VI)-reducing bacteria, mechanisms, influencing factors, products, and reoxidation are systematically summarized. Reportedly, some metal- and sulfate-reducing bacteria possess excellent U(VI) reduction capability through mechanisms involving c-type cytochromes, extracellular pili, electron shuttle, or thioredoxin reduction. In situ remediation has been demonstrated as an ideal strategy for large-scale degradation of uranium contaminants than ex situ. However, U(VI) reduction efficiency can be affected by various factors, including pH, temperature, bicarbonate, electron donors, and coexisting metal ions. Furthermore, it is noteworthy that the reduction products could be reoxidized when exposed to oxygen and nitrate, inevitably compromising the remediation effects, especially for non-crystalline U(IV) with weak stability.
Collapse
Affiliation(s)
- Wenbo You
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Wanting Peng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhichao Tian
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Maosheng Zheng
- Key Laboratory of Regional Energy Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
7
|
Jroundi F, Descostes M, Povedano-Priego C, Sánchez-Castro I, Suvannagan V, Grizard P, Merroun ML. Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: Insights regarding in situ recovery mining. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137758. [PMID: 32179349 DOI: 10.1016/j.scitotenv.2020.137758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 05/13/2023]
Abstract
A uranium-mineralized sandy aquifer, planned for mining by means of uranium in situ recovery (U ISR), harbors a reservoir of bacterial life that may influence the biogeochemical cycles surrounding uranium roll-front deposits. Since microorganisms play an important role at all stages of U ISR, a better knowledge of the resident bacteria before any ISR actuations is essential to face environmental quality assessment. The focus here was on the characterization of bacteria residing in an aquifer surrounding a uranium roll-front deposit that forms part of an ISR facility project at Zoovch Ovoo (Mongolia). Water samples were collected following the natural redox zonation inherited in the native aquifer, including the mineralized orebody, as well as compartments located both upstream (oxidized waters) and downstream (reduced waters) of this area. An imposed chemical zonation for all sensitive redox elements through the roll-front system was observed. In addition, high-throughput sequencing data showed that the bacterial community structure was shaped by the redox gradient and oxygen availability. Several interesting bacteria were identified, including sulphate-reducing (e.g. Desulfovibrio, Nitrospira), iron-reducing (e.g. Gallionella, Sideroxydans), iron-oxidizing (e.g. Rhodobacter, Albidiferax, Ferribacterium), and nitrate-reducing bacteria (e.g. Pseudomonas, Aquabacterium), which may also be involved in metal reduction (e.g. Desulfovibrio, Ferribacterium, Pseudomonas, Albidiferax, Caulobacter, Zooglea). Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the bacterial genera, suggesting either shared/preferred environmental conditions or the performance of similar/complementary functions. As a whole, the bacterial community residing in each aquifer compartment would appear to define an ecologically functional ecosystem, containing suitable microorganisms (e.g. acidophilic bacteria) prone to promote the remediation of the acidified aquifer by natural attenuation. Assessing the composition and structure of the aquifer's native bacteria is a prerequisite for understanding natural attenuation and predicting the role of bacterial input in improving ISR efficiency.
Collapse
Affiliation(s)
- Fadwa Jroundi
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | | | - Cristina Povedano-Priego
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | - Iván Sánchez-Castro
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| | | | - Pierre Grizard
- ORANO Mining, 125 avenue de Paris, F-92330 Châtillon, France.
| | - Mohamed L Merroun
- Department of Microbiology, Faculty of Science, University of Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain.
| |
Collapse
|
8
|
Chen X, Zheng W, Anbar AD. Uranium Isotope Fractionation ( 238U/ 235U) during U(VI) Uptake by Freshwater Plankton. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2744-2752. [PMID: 31995356 DOI: 10.1021/acs.est.9b06421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Uranium contamination in the environment is a serious public health concern. Biotic U(VI) reduction and nonreductive U(VI) uptake by microorganisms (e.g., U(VI) biosorption by cyanobacteria) are effective U remediation techniques. Variations of 238U/235U have been extensively explored to track biotic U(VI) reduction in laboratory experiments and field applications. However, U isotope fractionation during nonreductive U(VI) uptake by microorganisms is poorly constrained. To investigate U isotope fractionation in this process, we cultured freshwater plankton in the presence of U(VI) and measured 238U/235U in the culture media and biomass. We found that nonreductive U(VI) uptake by freshwater plankton fractionated U isotopes in the opposite direction compared to biotic U(VI) reduction. δ238U values in freshwater plankton were consistently ∼0.23 ± 0.06‰ lighter than those in dissolved U in the culture medium at various fractions of U removal (12-30%), consistent with equilibrium isotope fractionation in a closed system. The equilibrium isotope fractionation observed in our experiments possibly results from changes in coordination geometry between dissolved U(VI) in the culture media and adsorbed U(VI) on cell surfaces. Our experimental results highlight the need to consider U isotope fractionation during nonredox U(VI) uptake by microorganisms and organic matter when applying variations of 238U/235U to track biogeochemical processes and evaluate U remediation.
Collapse
Affiliation(s)
- Xinming Chen
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
- Department of Earth, Ocean and Atmospheric Sciences and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306, United States
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Ariel D Anbar
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
9
|
Basu A, Wanner C, Johnson TM, Lundstrom CC, Sanford RA, Sonnenthal EL, Boyanov MI, Kemner KM. Microbial U Isotope Fractionation Depends on the U(VI) Reduction Rate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2295-2303. [PMID: 31909614 DOI: 10.1021/acs.est.9b05935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
U isotope fractionation may serve as an accurate proxy for U(VI) reduction in both modern and ancient environments, if the systematic controls on the magnitude of fractionation (ε) are known. We model the effect of U(VI) reduction kinetics on U isotopic fractionation during U(VI) reduction by a novel Shewanella isolate, Shewanella sp. (NR), in batch incubations. The measured ε values range from 0.96 ± 0.16 to 0.36 ± 0.07‰ and are strongly dependent on the U(VI) reduction rate. The ε decreases with increasing reduction rate constants normalized by cell density and initial U(VI). Reactive transport simulations suggest that the rate dependence of ε is due to a two-step process, where diffusive transport of U(VI) from the bulk solution across a boundary layer is followed by enzymatic reduction. Our results imply that the spatial decoupling of bulk U(VI) solution and enzymatic reduction should be taken into account for interpreting U isotope data from the environment.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Earth Sciences, Royal Holloway , University of London , Egham TW20 0EX , U.K
| | - Christoph Wanner
- Institute of Geological Sciences , University of Bern , Baltzerstrasse 3 , Bern CH-3012 , Switzerland
| | - Thomas M Johnson
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Craig C Lundstrom
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Robert A Sanford
- Department of Geology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Eric L Sonnenthal
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Maxim I Boyanov
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Institute of Chemical Engineering , Bulgarian Academy of Sciences , Sofia 1113 , Bulgaria
| | - Kenneth M Kemner
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| |
Collapse
|
10
|
Lefebvre P, Noël V, Lau KV, Jemison NE, Weaver KL, Williams KH, Bargar JR, Maher K. Isotopic Fingerprint of Uranium Accumulation and Redox Cycling in Floodplains of the Upper Colorado River Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3399-3409. [PMID: 30807121 DOI: 10.1021/acs.est.8b05593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Uranium (U) groundwater contamination is a major concern at numerous former mining and milling sites across the Upper Colorado River Basin (UCRB), USA, where U(IV)-bearing solids have accumulated within naturally reduced zones (NRZs). Understanding the processes governing U reduction and oxidation within NRZs is critical for assessing the persistence of U in groundwater. To evaluate the redox cycling of uranium, we measured the U concentrations and isotopic compositions (δ238U) of sediments and pore waters from four study sites across the UCRB that span a gradient in sediment texture and composition. We observe that U accumulation occurs primarily within fine-grained (low-permeability) NRZs that show active redox variations. Low-permeability NRZs display high accumulation and low export of U, with internal redox cycling of U. In contrast, within high-permeability NRZs, U is remobilized under oxidative conditions, possibly without any fractionation, and transported outside the NRZs. The low δ238U of sediments outside of defined NRZs suggests that these reduced zones act as additional U sources. Collectively, our results indicate that fine-grained NRZs have a greater potential to retain uranium, whereas NRZs with higher permeability may constitute a more-persistent but dilute U source.
Collapse
Affiliation(s)
- Pierre Lefebvre
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
- Département de Géosciences , Ecole Normale Supérieure , Paris 75005 , France
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Kimberly V Lau
- Department of Geological Sciences , Stanford University , Stanford , California 94305 , United States
| | - Noah E Jemison
- Department of Geology , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Karrie L Weaver
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
| | - Kenneth H Williams
- Earth Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - John R Bargar
- Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States
| | - Kate Maher
- Department of Earth System Science , Stanford University , Stanford , California 94305 , United States
| |
Collapse
|
11
|
Abstract
Significant uranium (U) isotope fractionation has been observed during abiotic reduction of aqueous U, counter to the expectation that uranium isotopes are only fractionated by bioassociated enzymatic reduction. In our experiments, aqueous U is removed from solution by reductive precipitation onto the surfaces of synthetic iron monosulfide. The magnitude of uranium isotopic fractionation increases with decreasing aqueous U removal rate and with increasing amounts of neutrally charged aqueous Ca-U-CO3 species. Our discovery means that abiotic U isotope fractionation likely occurs in any reducing environment with aqueous Ca ≥ 1 mM, and that the magnitude of isotopic fractionation changes in response to changes in aqueous major ion concentrations that affect U speciation. Our results have implications for the study of anoxia in the ancient oceans and other environments.
Collapse
|
12
|
Bhattacharyya A, Campbell KM, Kelly SD, Roebbert Y, Weyer S, Bernier-Latmani R, Borch T. Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits. Nat Commun 2017; 8:15538. [PMID: 28569759 PMCID: PMC5461479 DOI: 10.1038/ncomms15538] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/06/2017] [Indexed: 11/09/2022] Open
Abstract
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. Crystalline uraninite is believed to be the dominant form in uranium deposits. Here, the authors find that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in ore deposits, implying that biogenic processes are more important than previously thought.
Collapse
Affiliation(s)
- Amrita Bhattacharyya
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA
| | | | | | - Yvonne Roebbert
- Institut für Mineralogie, Leibniz Universitat Hannover, Hannover D-30167, Germany
| | - Stefan Weyer
- Institut für Mineralogie, Leibniz Universitat Hannover, Hannover D-30167, Germany
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Thomas Borch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado 80523-1170, USA.,Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| |
Collapse
|
13
|
Nelson AW, Eitrheim ES, Knight AW, May D, Wichman MD, Forbes TZ, Schultz MK. Polonium-210 accumulates in a lake receiving coal mine discharges-anthropogenic or natural? JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2017; 167:211-221. [PMID: 27914777 DOI: 10.1016/j.jenvrad.2016.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 06/06/2023]
Abstract
Coal is an integral part of global energy production; however, coal mining is associated with numerous environmental health impacts. It is well documented that coal-mine waste can contaminate the environment with naturally-occurring radionuclides from the uranium-238 (238U) decay series. However, the behavior of the final radionuclide in the 238U-series, i.e., polonium-210 (210Po) arising from coal-mine waste-water discharge is largely unexplored. Here, results of a year-long (2014-2015) field study, in which the concentrations of 210Po in sediments and surface water of a lake that receives coal-mine waste-water discharge in West Virginia are presented. Initial measurements identified levels of 210Po in the lake sediments that were in excess of that which could be attributed to ambient U-series parent radionuclides; and were indicative of discharge site contamination of the lake ecosystem. However, control sediment obtained from a similar lake system in Iowa (an area with no coal mining or unconventional drilling) suggests that the levels of 210Po in the lake are a natural phenomenon; and are likely unrelated to waste-water treatment discharges. Elevated levels of 210Po have been reported in lake bottom sediments previously, yet very little information is available on the radioecological implications of 210Po accumulation in lake bottom sediments. The findings of this study suggest that (Monthly Energy Review, 2016) the natural accumulation and retention of 210Po in lake sediments may be a greater than previously considered (Chadwick et al., 2013) careful selection of control sites is important to prevent the inappropriate attribution of elevated levels of NORM in lake bottom ecosystems to industrial sources; and (Van Hook, 1979) further investigation of the source-terms and potential impacts on elevated 210Po in lake-sediment ecosystems is warranted.
Collapse
Affiliation(s)
- A W Nelson
- Department of Chemistry, University of Iowa, Chemistry Building, 251 North Capitol Street, Iowa City, IA 52242, United States.
| | - E S Eitrheim
- Department of Chemistry, University of Iowa, Chemistry Building, 251 North Capitol Street, Iowa City, IA 52242, United States.
| | - A W Knight
- Department of Chemistry, University of Iowa, Chemistry Building, 251 North Capitol Street, Iowa City, IA 52242, United States.
| | - D May
- Interdisciplinary Human Toxicology Program, University of Iowa, Iowa City, IA 52242, United States; University of Iowa State Hygienic Laboratory, Research Park, State Hygienic Laboratory 2490, Crosspark Road, Coralville, IA 52242, United States.
| | - M D Wichman
- Department of Environmental and Occupational Health, College of Public Health, University of Iowa, 145 N. Riverside Drive, 100 CPHB, Iowa City, IA 52242, United States.
| | - T Z Forbes
- Department of Chemistry, University of Iowa, Chemistry Building, 251 North Capitol Street, Iowa City, IA 52242, United States.
| | - M K Schultz
- Department of Chemistry, University of Iowa, Chemistry Building, 251 North Capitol Street, Iowa City, IA 52242, United States; Interdisciplinary Human Toxicology Program, University of Iowa, Iowa City, IA 52242, United States; University of Iowa State Hygienic Laboratory, Research Park, State Hygienic Laboratory 2490, Crosspark Road, Coralville, IA 52242, United States; Departments of Radiology and Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, ML B180 FRRB, 500 Newton Road, Iowa City, IA 52242, United States.
| |
Collapse
|
14
|
Saunders JA, Pivetz BE, Voorhies N, Wilkin RT. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:67-83. [PMID: 27576149 PMCID: PMC7316075 DOI: 10.1016/j.jenvman.2016.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 05/17/2023]
Abstract
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program.
Collapse
Affiliation(s)
- James A Saunders
- Department of Geosciences, 210 Petrie Hall, Auburn University, AL 36849, United States
| | - Bruce E Pivetz
- CSS-Dynamac, 10301 Democracy Lane Suite 300, Fairfax, VA 22030, United States
| | - Nathan Voorhies
- Environmental Solutions and Services, Battelle, 1300 Clay St., Suite 600, Oakland, CA 94612, United States
| | - Richard T Wilkin
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Ground Water and Ecosystems Restoration Division, 919 Kerr Research Dr., Ada, OK 74820, United States.
| |
Collapse
|
15
|
Jemison NE, Johnson TM, Shiel AE, Lundstrom CC. Uranium Isotopic Fractionation Induced by U(VI) Adsorption onto Common Aquifer Minerals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12232-12240. [PMID: 27758097 DOI: 10.1021/acs.est.6b03488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Uranium groundwater contamination due to U mining and processing affects numerous sites globally. Bioreduction of soluble, mobile U(VI) to U(IV)-bearing solids is potentially a very effective remediation strategy. Uranium isotopes (238U/235U) have been utilized to track the progress of microbial reduction, with laboratory and field studies finding a ∼1‰ isotopic fractionation, with the U(IV) product enriched in 238U. However, the isotopic fractionation produced by adsorption may complicate the use of 238U/235U to trace microbial reduction. A previous study found that adsorption of U(VI) onto Mn oxides produced a -0.2‰ fractionation with the adsorbed U(VI) depleted in 238U. In this study, adsorption to quartz, goethite, birnessite, illite, and aquifer sediments induced an average isotopic fractionation of -0.15‰ with the adsorbed U(VI) isotopically lighter than coexisting aqueous U(VI). In bicarbonate-bearing matrices, the fractionation depended little on the nature of the sorbent, with only birnessite producing an atypically large fractionation. In the case of solutions with ionic strengths much lower than those of typical groundwater, less isotopic fractionation was produced than U(VI) solutions with greater ionic strength. Studies using U isotope data to assess U(VI) reduction must consider adsorption as a lesser, but significant isotope fractionation process.
Collapse
Affiliation(s)
- N E Jemison
- Department of Geology, University of Illinois at Urbana-Champaign , 156 Computing Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| | - T M Johnson
- Department of Geology, University of Illinois at Urbana-Champaign , 156 Computing Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| | - A E Shiel
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University , 104 CEOAS Administration Building, 101 26th Street, Corvallis, Oregon 97322, United States
| | - C C Lundstrom
- Department of Geology, University of Illinois at Urbana-Champaign , 156 Computing Applications Building, 605 E. Springfield Avenue, Champaign, Illinois 61820, United States
| |
Collapse
|
16
|
Basu A, Schilling K, Brown ST, Johnson TM, Christensen JN, Hartmann M, Reimus PW, Heikoop JM, Woldegabriel G, DePaolo DJ. Se Isotopes as Groundwater Redox Indicators: Detecting Natural Attenuation of Se at an in Situ Recovery U Mine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10833-10842. [PMID: 27547844 DOI: 10.1021/acs.est.6b01464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
One of the major ecological concerns associated with the in situ recovery (ISR) of uranium (U) is the environmental release of soluble, toxic selenium (Se) oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced down-gradient sediments should mitigate the risk of Se contamination in groundwater. In this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se(VI)) is the dominant Se species in Rosita groundwater, and while several up-gradient wells have elevated Se(VI), the majority of the ore zone and down-gradient wells have little or no Se oxyanions. In addition, the δ82SeVI of Rosita groundwater is generally elevated relative to the U ore up to +6.14‰, with the most enriched values observed in the ore-zone wells. Increasing δ82Se with decreasing Se(VI) conforms to a Rayleigh type distillation model with an ε of -2.25‰ ± 0.61‰, suggesting natural Se(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Furthermore, our results show that Se isotopes are excellent sensors for detecting and monitoring post-mining natural attenuation of Se oxyanions at ISR sites.
Collapse
Affiliation(s)
- Anirban Basu
- Department of Earth and Planetary Science, University of California , 307 McCone Hall, Berkeley, California 94720, United States
| | - Kathrin Schilling
- Department of Environmental Science, Policy and Management, University of California , 130 Mulford Hall, Berkeley, California 94720, United States
| | - Shaun T Brown
- Department of Earth and Planetary Science, University of California , 307 McCone Hall, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Thomas M Johnson
- Department of Geology, University of Illinois at Urbana-Champaign , 605 East Springfield Avenue, Champaign, Illinois 61820, United States
| | - John N Christensen
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Matt Hartmann
- Uranium Resources, Inc. , 6950 South Potomac Street, Suite 300, Centennial, Colorado 80112, United States
| | - Paul W Reimus
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Jeffrey M Heikoop
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Giday Woldegabriel
- Earth and Environmental Sciences Division, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Donald J DePaolo
- Department of Earth and Planetary Science, University of California , 307 McCone Hall, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|