1
|
Deng S, Li C, Chen J, Cui Z, Lei T, Yang H, Chen P. Effects of triclosan exposure on stem cells from human exfoliated deciduous teeth (SHED) fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167053. [PMID: 37709070 DOI: 10.1016/j.scitotenv.2023.167053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Triclosan (TCS), a widely used broad-spectrum antibacterial agent and preservative, is commonly found in products and environments. Widespread human exposure to TCS has drawn increasing attention from researchers concerning its toxicological effect. However, minimal studies have focused on the impact of TCS exposure on human stem cells. Therefore, the aim of the present study was to evaluate the effects of TCS exposure on stem cells from human exfoliated deciduous teeth (SHED) and its molecular mechanisms. A series of experimental methods were conducted to assess cell viability, morphology, proliferation, differentiation, senescence, apoptosis, mitochondrial function, and oxidative stress after SHED exposure to TCS. Furthermore, transcriptome analysis was applied to investigate the response of SHED to different concentrations of TCS exposure and to explore the molecular mechanisms. We demonstrated that TCS has a dose-dependent proliferation and differentiation inhibition of SHED, while promoting cellular senescence, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and oxidative stress, as well as significantly induces apoptosis and autophagy flux inhibition at high concentrations. Interestingly, no significant morphological changes in SHED were observed after TCS exposure. Transcriptome analysis of normal and TCS-induced SHED suggested that SHED may use different strategies to counteract stress from different concentrations of TCS and showed significant differences. We discovered that TCS mediates cellular injury of SHED by enhancing the expression of PTEN, thereby inhibiting the phosphorylation levels of PI3K and AKT as well as mTOR expression. Collectively, our findings provide a new understanding of the toxic effects of TCS on human stem cell fate, which is important for determining the risk posed by TCS to human health.
Collapse
Affiliation(s)
- Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junqi Chen
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, Shandong 250117, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; Hunan Provincial Key Laboratory of Complex Effects Analysis for Chinese Patent Medicine, Yongzhou, Hunan Province 425199, China.
| |
Collapse
|
2
|
Figuero E, Serrano J, Arweiler NB, Auschill TM, Gürkan A, Emingil G. Supra and subgingival application of antiseptics or antibiotics during periodontal therapy. Periodontol 2000 2023. [PMID: 37766668 DOI: 10.1111/prd.12511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 09/29/2023]
Abstract
Periodontal diseases (gingivitis and periodontitis) are characterized by inflammatory processes which arise as a result of disruption of the balance in the oral ecosystem. According to the current S3 level clinical practice guidelines, therapy of patients with periodontitis involves a stepwise approach that includes the control of the patient's risk factors and the debridement of supra and subgingival biofilm. This debridement can be performed with or without the use of some adjuvant therapies, including physical or chemical agents, host modulating agents, subgingivally locally delivered antimicrobials, or systemic antimicrobials. Therefore, the main aim of this article is to review in a narrative manner the existing literature regarding the adjuvant application of local agents, either subgingivally delivered antibiotics and antiseptics or supragingivally applied rinses and dentifrices, during the different steps in periodontal therapy performed in Europe.
Collapse
Affiliation(s)
- Elena Figuero
- Department of Dental Clinical Specialties, Etiology and Therapy of Periodontal and Peri-implant Research Group, Faculty of Dentistry, University Complutense of Madrid, Madrid, Spain
- Etiology and Therapy of Periodontal and Peri-implant Research Group, University Complutense of Madrid, Madrid, Spain
| | - Jorge Serrano
- Etiology and Therapy of Periodontal and Peri-implant Research Group, University Complutense of Madrid, Madrid, Spain
| | - Nicole Birgit Arweiler
- Department of Periodontology and Peri-implant Diseases, Philipps University of Marburg, Marburg, Germany
| | - Thorsten Mathias Auschill
- Department of Periodontology and Peri-implant Diseases, Philipps University of Marburg, Marburg, Germany
| | - Ali Gürkan
- Department of Peridontology, Ege University School of Dentistry, Bornova, Turkey
| | - Gülnur Emingil
- Department of Peridontology, Ege University School of Dentistry, Bornova, Turkey
| |
Collapse
|
3
|
Abbood HM, Hijazi K, Gould IM. Chlorhexidine Resistance or Cross-Resistance, That Is the Question. Antibiotics (Basel) 2023; 12:antibiotics12050798. [PMID: 37237701 DOI: 10.3390/antibiotics12050798] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Chlorohexidine (CHX) is a widely used biocide in clinical and household settings. Studies over the last few decades have reported CHX resistance in different bacterial species, but at concentrations well below those used in the clinical setting. Synthesis of these findings is hampered by the inconsistent compliance with standard laboratory procedures for biocide susceptibility testing. Meanwhile, studies of in vitro CHX-adapted bacteria have reported cross-resistance between CHX and other antimicrobials. This could be related to common resistance mechanisms of CHX and other antimicrobials and/or the selective pressure driven by the intensive use of CHX. Importantly, CHX resistance and cross-resistance to antimicrobials should be investigated in clinical as well as environmental isolates to further our understanding of the role of CHX in selection of multidrug resistance. Whilst clinical studies to support the hypothesis of CHX cross-resistance with antibiotics are currently lacking, we recommend raising the awareness of healthcare providers in a range of clinical disciplines regarding the potential adverse impact of the unfettered use of CHX on tackling antimicrobial resistance.
Collapse
Affiliation(s)
- Hadeel Mohammed Abbood
- Institute of Dentistry, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
- College of Dentistry, Tikrit University, Tikrit 34001, Iraq
| | - Karolin Hijazi
- Institute of Dentistry, School of Medicine, Medical Science and Nutrition, University of Aberdeen, Aberdeen AB25 2ZR, UK
| | - Ian M Gould
- Department of Medical Microbiology, Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, UK
| |
Collapse
|
4
|
Zhu Y, Shen J, Guo M, Zheng H, Cao Y. Nitrogen-doped magnetic porous carbon material from low-cost anion-exchange resin as an efficient adsorbent for tetracyclines in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27315-27327. [PMID: 36378367 DOI: 10.1007/s11356-022-24093-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
In this work, nitrogen-doped magnetic porous carbon material (N-MPC) was prepared through the high-temperature calcination of low-cost [Fe(CN)6]3--loaded anion-exchange resin, which was experimentally demonstrated to have significant adsorption performance for tetracycline (TC) in water. The N-MPC adsorbent with a large specific surface area (781.1 m2 g-1) was able to maintain excellent performance in a wide pH range from 4 to 10 or in high ionic strength solution. The adsorption of TC on N-MPC was found to be more consistent with the pseudo-second-order model and Langmuir adsorption model, and the maximum adsorption capacity (qm, cal) was calculated to be 603.4 mg g-1. As a recoverable magnetic adsorbent, the N-MPC remained a TC removal rate higher than 70% after four adsorption cycles. The adsorption mechanism was speculated on the basis of characterizations, where pore filling, hydrogen bonding interaction, and π-π electron donor-acceptor (EDA) interaction were crucial adsorption mechanisms. A variety of antibiotics were selected for adsorption, and excellent performance was found especially for TCs, indicating that the N-MPC can be used for the efficient removal of TCs from water.
Collapse
Affiliation(s)
- Yating Zhu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Jia Shen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Manli Guo
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China.
| | - Haoling Zheng
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| | - Yujuan Cao
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
5
|
Papavasilopoulos RK, Kang S. Bibliometric Analysis: The Effects of Triclosan on Human Health. TOXICS 2022; 10:523. [PMID: 36136489 PMCID: PMC9500643 DOI: 10.3390/toxics10090523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Triclosan (TCS) is a widely used chemical whose effects on human health remains elusive. TCS may play a role in a variety of health issues, including endocrine dysfunction, irregular embryonic development, and immune suppression. It is possible that TCS's penetrative abilities across all body barriers, including the blood-brain barrier, may make bioaccumulation the primary driver of these issues. In addition, chronic overuse of this chemical in everyday life may further contribute to the already increasing problem of antibiotic resistance. TCS research has steadily increased since its transition from medical to commercial use over the last 50 years. However, there are some clear gaps in the depth of this research as the safety of this agent is not fully agreed upon. The Food and Drug Administration recently issued regulatory rules regarding TCS in some commercial products; however, it is still found in a variety of goods marketed as "antimicrobial" or "antibacterial". The purpose of this bibliometric study is to analyze research trends in this field and determine the amount of global attention TCS has received as to its relevancy in human health. Documenting and determining research concentration trends related to this field may outline where additional research is most necessary, as well as demonstrate the most valuable research produced and its relation to the advancement of our understanding of TCS. We found there to be a shift in research from TCS and its role in medical environments, to research based on the indirect effects of TCS through environmental contaminations, such as the propagation of antibiotic resistance. This shift was coupled with an increase in global research related to this field and identified China as a significant contributor. Although TCS has received notice, the simple fact of its continued use in so many common products, as well as the unclear understanding of its direct health impacts, reinforces the need for additional and more conclusive research before it has possible irreversible effects on our environment and health.
Collapse
|
6
|
Liang Y, Zhang H, Cai Z. New insights into the cellular mechanism of triclosan-induced dermal toxicity from a combined metabolomic and lipidomic approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143976. [PMID: 33310578 DOI: 10.1016/j.scitotenv.2020.143976] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS), an antimicrobial chemical, has been widely used in consumer goods and personal care products. Despite skin is the crucial entry of TCS into human body, previous studies mainly focused on the potential health risks after TCS absorption. Considering in vivo evidences have indicated that topical use of TCS could lead to serious skin lesions, it is thus in urgent need to unveil the underlying mechanisms of dermal toxicity caused by TCS application. In this study, mass spectrometry-based metabolomics and lipidomics were applied to investigate TCS-induced changes of endogenous small molecular metabolites and lipids in human HaCaT keratinocytes. Metabolic biomarker analysis revealed that TCS exposure was associated with the elevation of purine and glutathione metabolism, down-regulation of amino acid metabolism and dysregulation of lipid metabolism in keratinocytes. These intracellular metabolic disorders consequently led to the overproduction of reactive oxygen species (ROS) and accumulation of ammonia. TCS-induced oxidative stress was further validated in human HaCaT cells, functioning as the crucial factor for the generation of pro-inflammatory cytokines that triggered inflammation and lipid disturbances related to cell apoptosis. Our findings update the existing understanding of skin health risks of TCS application at the molecular level.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China; HKBU Institute for Research and Continuing Education, Shenzhen, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
7
|
Blaustein RA, Michelitsch LM, Glawe AJ, Lee H, Huttelmaier S, Hellgeth N, Ben Maamar S, Hartmann EM. Toothbrush microbiomes feature a meeting ground for human oral and environmental microbiota. MICROBIOME 2021; 9:32. [PMID: 33517907 PMCID: PMC7849112 DOI: 10.1186/s40168-020-00983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND While indoor microbiomes impact our health and well-being, much remains unknown about taxonomic and functional transitions that occur in human-derived microbial communities once they are transferred away from human hosts. Toothbrushes are a model to investigate the potential response of oral-derived microbiota to conditions of the built environment. Here, we characterize metagenomes of toothbrushes from 34 subjects to define the toothbrush microbiome and resistome and possible influential factors. RESULTS Toothbrush microbiomes often comprised a dominant subset of human oral taxa and less abundant or site-specific environmental strains. Although toothbrushes contained lower taxonomic diversity than oral-associated counterparts (determined by comparison with the Human Microbiome Project), they had relatively broader antimicrobial resistance gene (ARG) profiles. Toothbrush resistomes were enriched with a variety of ARGs, notably those conferring multidrug efflux and putative resistance to triclosan, which were primarily attributable to versatile environmental taxa. Toothbrush microbial communities and resistomes correlated with a variety of factors linked to personal health, dental hygiene, and bathroom features. CONCLUSIONS Selective pressures in the built environment may shape the dynamic mixture of human (primarily oral-associated) and environmental microbiota that encounter each other on toothbrushes. Harboring a microbial diversity and resistome distinct from human-associated counterparts suggests toothbrushes could potentially serve as a reservoir that may enable the transfer of ARGs. Video abstract.
Collapse
Affiliation(s)
- Ryan A. Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Adam J. Glawe
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Hansung Lee
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Nancy Hellgeth
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| |
Collapse
|
8
|
Dix-Cooper L, Kosatsky T. Use of antibacterial toothpaste is associated with higher urinary triclosan concentrations in Asian immigrant women living in Vancouver, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:897-904. [PMID: 30947060 DOI: 10.1016/j.scitotenv.2019.03.379] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/24/2019] [Accepted: 03/24/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Triclosan is an antibacterial added to consumer products including toothpastes, cosmetics, and plastic cutting boards. Known to disrupt reproductive and hormonal functioning in animals, epidemiological studies indicate that exposure to triclosan may have similar effects on human health. METHODS 100 women aged 19 to 45 years born in India or China, Hong Kong, and Taiwan new to the Vancouver (Canada) area were recruited in 2015-2016 by word of mouth, public advertisements, and contacts in health and cultural organizations. Participants completed an interview which queried potential sources of triclosan exposure at home and at work and their urine was tested for triclosan by GC-MS. Determinants of urinary triclosan were assessed by Wilcoxon signed-rank test. RESULTS Triclosan was detected in 62% of urine samples, with an overall GM of 14.5 μg/L (95% CI: 9.7-21.7 μg/L; range: <LOD to 1900 μg/L). Colgate Total® toothpaste users had higher urinary triclosan concentrations (median = 34.0 μg/L) than non-users (median = 2.5 μg/L, ρ < 0.001), a result which was unaffected by adjustment for age, income, BMI, and country of birth. South Asian born women had elevated urinary triclosan compared to East Asian born women. CONCLUSION Triclosan exposure via a specific antibacterial toothpaste brand was identified in reproductive age newcomer women in Canada. Health education around brushing teeth well while using lower toothpaste volumes or choosing triclosan-free toothpaste would reduce triclosan exposure.
Collapse
Affiliation(s)
- L Dix-Cooper
- Environmental Health Services, British Columbia Centre for Disease Control (BCCDC), Vancouver, BC, Canada.
| | - T Kosatsky
- Environmental Health Services, British Columbia Centre for Disease Control (BCCDC), Vancouver, BC, Canada
| |
Collapse
|
9
|
Jackson EN, Rowland-Faux L, James MO, Wood CE. Administration of low dose triclosan to pregnant ewes results in placental uptake and reduced estradiol sulfotransferase activity in fetal liver and placenta. Toxicol Lett 2018; 294:116-121. [PMID: 29772265 DOI: 10.1016/j.toxlet.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/04/2023]
Abstract
Sulfonation is a major pathway of estrogen biotransformation with a role in regulating estrogen homeostasis in humans and sheep. Previous in vitro studies found that triclosan is an especially potent competitive inhibitor of ovine placental estrogen sulfotransferase, with Kic of <0.1 nM. As the placenta is the main organ responsible for estrogen synthesis in pregnancy in both women and sheep, and the liver is another site of estrogen biotransformation, this study examined the effects of triclosan exposure of pregnant ewes on placental and hepatic sulfotransferase activity. Triclosan, 0.1 mg/kg/day, or saline vehicle was administered to late gestation fetal sheep for two days either by direct infusion into the fetal circulation or infusion into the maternal blood. On the third day, fetal liver and placenta were harvested and analyzed for triclosan and for cytosolic estradiol sulfotransferase activity. Placenta contained higher concentrations of triclosan than liver in each individual sheep in both treatment groups. There was a negative correlation between triclosan tissue concentration (pmol/g tissue) and cytosolic sulfotransferase activity (pmol/min/mg protein) towards estradiol. These findings demonstrated that in the sheep exposed to very low concentrations of triclosan, this substance is taken up into placenta and reduces estrogen sulfonation.
Collapse
Affiliation(s)
- Erin N Jackson
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Laura Rowland-Faux
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Margaret O James
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.
| | - Charles E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
10
|
Plasmodium dihydrofolate reductase is a second enzyme target for the antimalarial action of triclosan. Sci Rep 2018; 8:1038. [PMID: 29348637 PMCID: PMC5773535 DOI: 10.1038/s41598-018-19549-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022] Open
Abstract
Malaria, caused by parasites of the genus Plasmodium, leads to over half a million deaths per year, 90% of which are caused by Plasmodium falciparum. P. vivax usually causes milder forms of malaria; however, P. vivax can remain dormant in the livers of infected patients for weeks or years before re-emerging in a new bout of the disease. The only drugs available that target all stages of the parasite can lead to severe side effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency; hence, there is an urgent need to develop new drugs active against blood and liver stages of the parasite. Different groups have demonstrated that triclosan, a common antibacterial agent, targets the Plasmodium liver enzyme enoyl reductase. Here, we provide 4 independent lines of evidence demonstrating that triclosan specifically targets both wild-type and pyrimethamine-resistant P. falciparum and P. vivax dihydrofolate reductases, classic targets for the blood stage of the parasite. This makes triclosan an exciting candidate for further development as a dual specificity antimalarial, which could target both liver and blood stages of the parasite.
Collapse
|