1
|
Sun J, Zhou T, Yin F, Wang S. Anaerobic co-biodegradation of polyhydroxyalkanoate and swine manure for volatile fatty acid production: The impact of C/N ratios and microbial dynamics. BIORESOURCE TECHNOLOGY 2025; 418:131995. [PMID: 39694107 DOI: 10.1016/j.biortech.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Polyhydroxyalkanoate (PHA) is the important biodegradable plastic, however, biodegradation of PHA waste in anaerobic environments emits more CH4, a potent greenhouse gas. Bioconversion of PHA waste to useful byproducts - volatile fatty acids (VFAs) is a practical method to upcycle carbon from PHA. In this study, PHA waste was anaerobically co-digested with swine manure (SM) (the typical high nitrogen waste) at different C/N ratios. The results indicate that co-digestion of PHA and SM with a C/N ratio of 32.1 achieved VFA production of 5488 mg COD/L and 0.20 g COD/g VS. No significant differences were found in terms of the highest VFA concentrations between treatments with C/N ratios of 43.4 and 32.1. VFA produciton of 3655 mg COD/L and 0.14 g COD/g VS was achieved at 19 days by adjusting the C/N ratio to 19.2. Four bacteria were identified as dominant microorganisms responsible for converting PHA and SM to VFA.
Collapse
Affiliation(s)
- Jiaxin Sun
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fubin Yin
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunli Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
He M, Hsu YI, Uyama H. Superior sequence-controlled poly(L-lactide)-based bioplastic with tunable seawater biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134819. [PMID: 38850940 DOI: 10.1016/j.jhazmat.2024.134819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Developing superior-performance marine-biodegradable plastics remains a critical challenge in mitigating marine plastic pollution. Commercially available biodegradable polymers, such as poly(L-lactide) (PLA), undergo slow degradation in complex marine environments. This study introduces an innovative bioplastic design that employs a facile ring-opening and coupling reaction to incorporate hydrophilic polyethylene glycol (PEG) into PLA, yielding PEG-PLA copolymers with either sequence-controlled alternating or random structures. These materials exhibit exceptional toughness in both wet and dry states, with an elongation at break of 1446.8% in the wet state. Specifically, PEG4kPLA2k copolymer biodegraded rapidly in proteinase K enzymatic solutions and had a significant weight loss of 71.5% after 28 d in seawater. The degradation primarily affects the PLA segments within the PEG-PLA copolymer, as evidenced by structural changes confirmed through comprehensive characterization techniques. The seawater biodegradability, in line with the Organization for Economic Cooperation and Development 306 Marine biodegradation test guideline, reached 72.63%, verified by quantitative biochemical oxygen demand analysis, demonstrating rapid chain scission in marine environments. The capacity of PEG-PLA bioplastic to withstand DI water and rapidly biodegrade in seawater makes it a promising candidate for preventing marine plastic pollution.
Collapse
Affiliation(s)
- Manjie He
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yu-I Hsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Lavagnolo MC, Poli V, Zampini AM, Grossule V. Biodegradability of bioplastics in different aquatic environments: A systematic review. J Environ Sci (China) 2024; 142:169-181. [PMID: 38527882 DOI: 10.1016/j.jes.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 03/27/2024]
Abstract
Bioplastics were first introduced as environmentally friendly materials, with properties similar to those of conventional plastics. A bioplastic is defined as biodegradable if it can be decomposed into carbon dioxide under aerobic degradation, or methane and CO2 under anaerobic conditions, inorganic compounds, and new cellular biomass, by the action of naturally occurring microorganisms. This definition however does not provide any information on the environmental conditions, timescale and extent at which decomposition processes should occur. With regard to the aquatic environment, recognized standards have been established to assess the ability of plastics to undergo biodegradation; however, these standards fail to provide clear targets to be met to allow labelling of a bioplastic as biodegradable. Moreover, these standards grant the user an extensive leeway in the choice of process parameters. For these reasons, the comparison of results deriving from different studies is challenging. The authors analysed and discussed the degree of biodegradability of a series of biodegradable bioplastics in aquatic environments (both fresh and salt water) using the results obtained in the laboratory and from on-site testing in the context of different research studies. Biochemical Oxygen Demand (BOD), CO2 evolution, surface erosion and weight loss were the main parameters used by researchers to describe the percentage of biodegradation. The results showed a large variability both in weight loss and BOD, even when evaluating the same type of bioplastics. This confirms the need for a reference range of values to be established with regard to parameters applied in defining the biodegradability of bioplastics.
Collapse
Affiliation(s)
- Maria Cristina Lavagnolo
- Department of Civil, Environmental and Architectural Engineering - Laboratory of Environmental Engineering, University of Padova, Lungargine Rovetta 8, Padova 35100, Italy.
| | - Valentina Poli
- Department of Civil, Environmental and Architectural Engineering - Laboratory of Environmental Engineering, University of Padova, Lungargine Rovetta 8, Padova 35100, Italy
| | - Anna Maria Zampini
- Department of Civil, Environmental and Architectural Engineering - Laboratory of Environmental Engineering, University of Padova, Lungargine Rovetta 8, Padova 35100, Italy
| | - Valentina Grossule
- Department of Civil, Environmental and Architectural Engineering - Laboratory of Environmental Engineering, University of Padova, Lungargine Rovetta 8, Padova 35100, Italy
| |
Collapse
|
4
|
Li Q, Lan Y, Yang Y, Kang S, Wang X, Jiang J, Liu S, Wang Q, Zhang W, Zhang L. Effect of luminescent materials on the biochemistry, ultrastructure, and rhizobial microbiota of Spirodela polyrhiza. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108427. [PMID: 38367389 DOI: 10.1016/j.plaphy.2024.108427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Fluorescent materials and technologies have become widely used in scientific research, and due to the ability to convert light wavelengths, their application to photosynthetic organisms can affect their development by altering light quality. However, the impacts of fluorescent materials on aquatic plants and their environmental risks remain unclear. To assess the effects of luminescent materials on floating aquatic macrophytes and their rhizosphere microorganisms, 4-(di-p-tolylamino)benzaldehyde-A (DTB-A) and 4-(di-p-tolylamino)benzaldehyde-M (DTB-M) (emitting blue-green and orange-red light, respectively) were added individually and jointly to Spirodela polyrhiza cultures and set at different concentrations (1, 10, and 100 μM). Both DTB-A and DTB-M exhibited phytotoxicity, which increased with concentration under separate treatment. Moreover, the combined group exhibited obvious stress relief at 10 μM compared to the individually treated group. Fluorescence imaging showed that DTB-A and DTB-M were able to enter the cell matrix and organelles of plant leaves and roots. Peroxidation induced cellular damage, contributing to a decrease in superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde (MDA) accumulation. Decomposition of organelle structures, starch accumulation in chloroplasts, and plasmolysis were observed under the ultrastructure, disrupting photosynthetic pigment content and photosynthesis. DTB-A and DTB-M exposure resulted in growth inhibition, dry weight loss, and leaf yellowing in S. polyrhiza. A total of 3519 Operational Taxonomic Units (OTUs) were identified in the rhizosphere microbiome. The microbial communities were dominated by Alphaproteobacteria, Oxyphotobacteria, and Gammaproteobacteria, with the abundance and diversity varied significantly among treatment groups according to Shannon, Simpson, and Chao1 indices. This study revealed the stress defense response of S. polyrhiza to DTB-A and DTB-M exposures, which provides a broader perspective for the bioremediation of pollutants using aquatic plants and supports the further development of fluorescent materials for applications.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China.
| | - Yiyang Lan
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shiyun Kang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Xin Wang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China
| | - Jiarui Jiang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Shengyue Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | | | - Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, PR China
| | - Liping Zhang
- The Chinese University of Hong Kong, Shenzhen, 518172, PR China.
| |
Collapse
|
5
|
Rajeshkumar L, Kumar PS, Ramesh M, Sanjay MR, Siengchin S. Assessment of biodegradation of lignocellulosic fiber-based composites - A systematic review. Int J Biol Macromol 2023; 253:127237. [PMID: 37804890 DOI: 10.1016/j.ijbiomac.2023.127237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Lignocellulosic fiber-reinforced polymer composites are the most extensively used modern-day materials with low density and better specific strength specifically developed to render better physical, mechanical, and thermal properties. Synthetic fiber-reinforced composites face some serious issues like low biodegradability, non-environmentally friendly, and low disposability. Lignocellulosic or natural fiber-reinforced composites, which are developed from various plant-based fibers and animal-based fibers are considered potential substitutes for synthetic fiber composites because they are characterized by lightweight, better biodegradability, and are available at low cost. It is very much essential to study end-of-life (EoL) conditions like biodegradability for the biocomposites which occur commonly after their service life. During biodegradation, the physicochemical arrangement of the natural fibers, the environmental conditions, and the microbial populations, to which the natural fiber composites are exposed, play the most influential factors. The current review focuses on a comprehensive discussion of the standards and assessment methods of biodegradation in aerobic and anaerobic conditions on a laboratory scale. This review is expected to serve the materialists and technologists who work on the EoL behaviour of various materials, particularly in natural fiber-reinforced polymer composites to apply these standards and test methods to various classes of biocomposites for developing sustainable materials.
Collapse
Affiliation(s)
- L Rajeshkumar
- Centre for Machining and Materials Testing, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - P Sathish Kumar
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| | - M Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India
| | - M R Sanjay
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand
| |
Collapse
|
6
|
Sun Y, Mazzotta MG, Miller CA, Apprill A, Izallalen M, Mazumder S, Perri ST, Edwards B, Reddy CM, Ward CP. Distinct microbial communities degrade cellulose diacetate bioplastics in the coastal ocean. Appl Environ Microbiol 2023; 89:e0165123. [PMID: 38054734 PMCID: PMC10734458 DOI: 10.1128/aem.01651-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Cellulose diacetate (CDA) is a promising alternative to conventional plastics due to its versatility in manufacturing and low environmental persistence. Previously, our group demonstrated that CDA is susceptible to biodegradation in the ocean on timescales of months. In this study, we report the composition of microorganisms driving CDA degradation in the coastal ocean. We found that the coastal ocean harbors distinct bacterial taxa implicated in CDA degradation and these taxa have not been previously identified in prior CDA degradation studies, indicating an unexplored diversity of CDA-degrading bacteria in the ocean. Moreover, the shape of the plastic article (e.g., a fabric, film, or foam) and plasticizer in the plastic matrix selected for different microbial communities. Our findings pave the way for future studies to identify the specific species and enzymes that drive CDA degradation in the marine environment, ultimately yielding a more predictive understanding of CDA biodegradation across space and time.
Collapse
Affiliation(s)
- Yanchen Sun
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | - Carolyn A. Miller
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | | | | | | | | | - Christopher M. Reddy
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Collin P. Ward
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
7
|
Bhalerao A, Dueker U, Weber M, Eich A, Lott C, Endres HJ, Nogueira R. Bacterial diversity of biofilms on polyhydroxybutyrate exposed to marine conditions: Ex-situ vs. in-situ tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167458. [PMID: 37777124 DOI: 10.1016/j.scitotenv.2023.167458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/02/2023]
Abstract
Biofilms form on any available surface and, depending on the characteristics of the material and the environmental conditions, biodegradation can take place. We compared the bacterial composition of polyhydroxybutyrate (PHB)-related biofilm communities from marine ex-situ and in-situ tests to assess the differences in diversity and abundance between these two biofilms. This comparison will help to better assess the transferability of tank tests to real-life scenarios. The in-situ tests were set up in the Mediterranean Sea on the Island of Elba, Italy where PHB-tensile bars were lodged in the sediments. This created a water-exposed aerobic and mud-planted anaerobic scenario. The ex-situ tests were modeled after in-situ tests and performed in temperature-controlled tanks. The PHB-related biofilms were harvested after 240 days of exposure along with planktonic bacteria, and particle- and sediment-related biofilm. The bacterial composition was elucidated using 16S rDNA sequencing. Biofilms harvested from the in-situ test were more diverse, less even, and contained more rare species compared to biofilms from the ex-situ test. The PHB-related biofilm was characterized by a higher abundance of the bacterial order Desulfobacterales. The composition of PHB-related biofilm varied significantly between the two tests and between aerobic and anaerobic conditions. The composition of PHB-related biofilm was significantly different from planktonic bacteria, particle, and sediment-related biofilm, showing the influence of PHB on the biofilm composition. Thus, the ex-situ tank test for PHB degradation cannot, in terms of bacterial composition, simulate the in-situ conditions to their full extent.
Collapse
Affiliation(s)
- Aniruddha Bhalerao
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Urda Dueker
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, Steinfeldweg 15, 77815 Bühl, Germany
| | - Andreas Eich
- HYDRA Marine Sciences GmbH, Steinfeldweg 15, 77815 Bühl, Germany
| | - Christian Lott
- HYDRA Marine Sciences GmbH, Steinfeldweg 15, 77815 Bühl, Germany
| | - Hans Josef Endres
- Institute for Plastics and Circulation Technology, Leibniz University Hannover, An der Universität 2, 30823 Garbsen, Germany
| | - Regina Nogueira
- Institute of Sanitary Engineering and Waste Management, Leibniz University Hannover, Welfengarten 1, D-30167 Hannover, Germany.
| |
Collapse
|
8
|
Jeon Y, Jin H, Kong Y, Cha HG, Lee BW, Yu K, Yi B, Kim HT, Joo JC, Yang YH, Lee J, Jung SK, Park SH, Park K. Poly(3-hydroxybutyrate) Degradation by Bacillus infantis sp. Isolated from Soil and Identification of phaZ and bdhA Expressing PHB Depolymerase. J Microbiol Biotechnol 2023; 33:1076-1083. [PMID: 37311705 PMCID: PMC10468675 DOI: 10.4014/jmb.2303.03013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a biodegradable and biocompatible bioplastic. Effective PHB degradation in nutrient-poor environments is required for industrial and practical applications of PHB. To screen for PHB-degrading strains, PHB double-layer plates were prepared and three new Bacillus infantis species with PHB-degrading ability were isolated from the soil. In addition, phaZ and bdhA of all isolated B. infantis were confirmed using a Bacillus sp. universal primer set and established polymerase chain reaction conditions. To evaluate the effective PHB degradation ability under nutrient-deficient conditions, PHB film degradation was performed in mineral medium, resulting in a PHB degradation rate of 98.71% for B. infantis PD3, which was confirmed in 5 d. Physical changes in the degraded PHB films were analyzed. The decrease in molecular weight due to biodegradation was confirmed using gel permeation chromatography and surface erosion of the PHB film was observed using scanning electron microscopy. To the best of our knowledge, this is the first study on B. infantis showing its excellent PHB degradation ability and is expected to contribute to PHB commercialization and industrial composting.
Collapse
Affiliation(s)
- Yubin Jeon
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - HyeJi Jin
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Youjung Kong
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Haeng-Geun Cha
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Byung Wook Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Kyungjae Yu
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Byongson Yi
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Hee Taek Kim
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Chan Joo
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jongbok Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Sang-Kyu Jung
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong 30016, Republic of Korea
| |
Collapse
|
9
|
Falzarano M, Polettini A, Pomi R, Rossi A, Zonfa T. Anaerobic Biodegradability of Commercial Bioplastic Products: Systematic Bibliographic Analysis and Critical Assessment of the Latest Advances. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2216. [PMID: 36984096 PMCID: PMC10058929 DOI: 10.3390/ma16062216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Bioplastics have entered everyday life as a potential sustainable substitute for commodity plastics. However, still further progress should be made to clarify their degradation behavior under controlled and uncontrolled conditions. The wide array of biopolymers and commercial blends available make predicting the biodegradation degree and kinetics quite a complex issue that requires specific knowledge of the multiple factors affecting the degradation process. This paper summarizes the main scientific literature on anaerobic digestion of biodegradable plastics through a general bibliographic analysis and a more detailed discussion of specific results from relevant experimental studies. The critical analysis of literature data initially included 275 scientific references, which were then screened for duplication/pertinence/relevance. The screened references were analyzed to derive some general features of the research profile, trends, and evolution in the field of anaerobic biodegradation of bioplastics. The second stage of the analysis involved extracting detailed results about bioplastic degradability under anaerobic conditions by screening analytical and performance data on biodegradation performance for different types of bioplastic products and different anaerobic biodegradation conditions, with a particular emphasis on the most recent data. A critical overview of existing biopolymers is presented, along with their properties and degradation mechanisms and the operating parameters influencing/enhancing the degradation process under anaerobic conditions.
Collapse
|
10
|
Priya A, Anusha G, Thanigaivel S, Karthick A, Mohanavel V, Velmurugan P, Balasubramanian B, Ravichandran M, Kamyab H, Kirpichnikova IM, Chelliapan S. Removing microplastics from wastewater using leading-edge treatment technologies: a solution to microplastic pollution-a review. Bioprocess Biosyst Eng 2023; 46:309-321. [PMID: 35301580 DOI: 10.1007/s00449-022-02715-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
Abstract
Microplastics (MPs) in environmental studies have revealed that public sewage treatment plants are a common pathway for microplastics to reach local surroundings. Microplastics are becoming more of a worry, posing a danger to both marine wildlife and humans. These plastic items not only contribute to the macrocosmic proliferation of plastics but also the scattering of microplastics and the concentration of other micropollutant-containing objects, increasing the number of pollutants identified. Microplastics' behavior, movement, transformation, and persistence mechanisms, as well as their mode of action in various wastewater effluent treatment procedures, are still unknown. They are making microplastics made from wastewater a big deal. We know that microplastics enter wastewater treatment facilities (WWTPs), that wastewater is released into the atmosphere, and that this wastewater has been considered to represent a threat to habitats and ground character based on our literature assessment. The basic methods of wastewater and sewage sludge, as well as the treatment procedure and early characterization, are covered throughout the dissection of the problematic scientific conceptualization.
Collapse
Affiliation(s)
- Arunkumar Priya
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641407, India.
| | - Gururajan Anusha
- Department of Civil Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641407, India
| | - Sundaram Thanigaivel
- Saveetha School of Engineering, Department of Biotechnology, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Alagar Karthick
- Renewable Energy lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore, Tamil Nadu, 641407, India.
| | - Vinayagam Mohanavel
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | - Palanivel Velmurugan
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Selaiyur, Chennai, Tamil Nadu, 600073, India
| | | | - Manickam Ravichandran
- Department of Mechanical Engineering, K. Ramakrishnan College of Engineering, Tiruchirappalli, Tamil Nadu, 621112, India
- Department of Mechanical Engineering and University Centre for Research & Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Irina Mikhailovna Kirpichnikova
- Electric Power Station, Network, and Supply System, South Ural State University, (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Biodegradation of Different Types of Bioplastics through Composting—A Recent Trend in Green Recycling. Catalysts 2023. [DOI: 10.3390/catal13020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In recent years, the adoption of sustainable alternatives has become a powerful tool for replacing petroleum-based polymers. As a biodegradable alternative to petroleum-derived plastics, bioplastics are becoming more and more prevalent and have the potential to make a significant contribution to reducing plastic pollution in the environment. Meanwhile, their biodegradation is highly dependent on their environment. The leakage of bioplastics into the environment and their long degradation time frame during waste management processes are becoming major concerns that need further investigation. This review highlights the extent and rate of the biodegradation of bioplastic in composting, soil, and aquatic environments, and examines the biological and environmental factors involved in the process. Furthermore, the review highlights the need for further research on the long-term fate of bioplastics in natural and industrial environments. The roles played by enzymes as biocatalysts and metal compounds as catalysts through composting can help to achieve a sustainable approach to the biodegradation of biopolymers. The knowledge gained in this study will also contribute to the development of policies and assessments for bioplastic waste, as well as provide direction for future bioplastics research and development.
Collapse
|
12
|
Methods of Analyses for Biodegradable Polymers: A Review. Polymers (Basel) 2022; 14:polym14224928. [PMID: 36433054 PMCID: PMC9694517 DOI: 10.3390/polym14224928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Biodegradable polymers are materials that can decompose through the action of various environmental microorganisms, such as bacteria and fungi, to form water and carbon dioxide. The biodegradability characteristics have led to a growing demand for the accurate and precise determination of the degraded polymer composition. With the advancements in analytical product development, various analytical methods are available and touted as practical and preferable methods of bioanalytical techniques, which enable the understanding of the complex composition of biopolymers such as polyhydroxyalkanoates and poly(lactic acid). The former part of this review discusses the definition and examples of biopolymers, followed by the theory and instrumentation of analytical methods applicable to the analysis of biopolymers, such as physical methods (SEM, TEM, weighing analytical balance, etc.), chromatographic methods (GC, THM-GC, SEC/GPC), spectroscopic methods (NMR, FTIR, XRD, XRF), respirometric methods, thermal methods (DSC, DTA, TGA), and meta-analysis. Special focus is given to the chromatographic methods, because this is the routine method of polymer analysis. The aim of this review is to focus on the recent developments in the field of biopolymer analysis and instrument application to analyse the various types of biopolymers.
Collapse
|
13
|
Algal degradation of microplastic from the environment: Mechanism, challenges, and future prospects. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Šašinková D, Serbruyns L, Julinová M, FayyazBakhsh A, De Wilde B, Koutný M. Evaluation of the biodegradation of polymeric materials in the freshwater environment—An attempt to prolong and accelerate the biodegradation experiment. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Awasthi SK, Kumar M, Kumar V, Sarsaiya S, Anerao P, Ghosh P, Singh L, Liu H, Zhang Z, Awasthi MK. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119600. [PMID: 35691442 DOI: 10.1016/j.envpol.2022.119600] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Recent years have seen upsurge in plastic manufacturing and its utilization in various fields, such as, packaging, household goods, medical applications, and beauty products. Due to various adverse impacts imposed by synthetic plastics on the health of living well-being and the environment, the biopolymers have been emerged out an alternative. Although, the biopolymers such as polyhydroxyalkanoates (PHA) are entirely degradable. However, the other polymers, such as poly (lactic acid) (PLA) are only partially degradable and often not biosynthesized. Biodegradation of the polymers using microorganisms is considered an effective bioremediation approach. Biodegradation can be performed in aerobic and anaerobic environments. In this context, the present review discusses the biopolymer production, their persistence in the environment, aerobic biodegradation, anaerobic biodegradation, challenges associated with biodegradation and future perspectives. In addition, this review discusses the advancement in the technologies associated with biopolymer production, biodegradation, and their biodegradation standard in different environmental settings. Furthermore, differences in the degradation condition in the laboratory as well as on-site are discussed.
Collapse
Affiliation(s)
- Sanjeev Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Manish Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Surendra Sarsaiya
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Prathmesh Anerao
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Lal Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Hong Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi Province, PR China.
| |
Collapse
|
16
|
Koh LM, Khor SM. Current state and future prospects of sensors for evaluating polymer biodegradability and sensors made from biodegradable polymers: A review. Anal Chim Acta 2022; 1217:339989. [PMID: 35690422 DOI: 10.1016/j.aca.2022.339989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/20/2022]
Abstract
Since the invention of fully synthetic plastic in the 1900s, plastics have been extensively applied in various fields and represent a significant market due to their satisfactory properties. However, the non-biodegradable nature of most plastics has contributed to the accumulation of plastic waste, which poses a threat to both the environment and living beings. Given this, biodegradable polymers have emerged as eco-friendly substitutes for non-biodegradable polymers, and standard test methods have been established to evaluate polymer biodegradability. Technological advancement and the weaknesses of conventional test methods drive the invention of sensors that enable real-time monitoring of biodegradability. Besides, biodegradable polymers have been utilized to make sensors with different functionalities. Given this, the current paper is the first to compare and contrast sensors capable of identifying biodegradable polymers. The detection using sensors represents an innovative perspective for real-time monitoring of biodegradability. Besides, sensors made from biodegradable polymers are included, and these sensors are of different types and show various applications. Finally, the challenges associated with developing these sensors are described to advance future research.
Collapse
Affiliation(s)
- Lai Mun Koh
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Innovation in Medical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
17
|
Schirmeister CG, Mülhaupt R. Closing the Carbon Loop in the Circular Plastics Economy. Macromol Rapid Commun 2022; 43:e2200247. [PMID: 35635841 DOI: 10.1002/marc.202200247] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/07/2022] [Indexed: 11/06/2022]
Abstract
Today, plastics are ubiquitous in everyday life, problem solvers of modern technologies, and crucial for sustainable development. Yet the surge in global demand for plastics of the growing world population has triggered a tidal wave of plastic debris in the environment. Moving from a linear to a zero-waste and carbon-neutral circular plastic economy is vital for the future of the planet. Taming the plastic waste flood requires closing the carbon loop through plastic reuse, mechanical and molecular recycling, carbon capture, and use of the greenhouse gas carbon dioxide. In the quest for eco-friendly products, plastics do not need to be reinvented but tuned for reuse and recycling. Their full potential must be exploited regarding energy, resource, and eco efficiency, waste prevention, circular economy, climate change mitigation, and lowering environmental pollution. Biodegradation holds promise for composting and bio-feedstock recovery, but it is neither the Holy Grail of circular plastics economy nor a panacea for plastic littering. As an alternative to mechanical downcycling, molecular recycling enables both closed-loop recovery of virgin plastics and open-loop valorization, producing hydrogen, fuels, refinery feeds, lubricants, chemicals, and carbonaceous materials. Closing the carbon loop does not create a Perpetuum Mobile and requires renewable energy to achieve sustainability. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carl G Schirmeister
- Freiburg Materials Research Center and Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104, Freiburg, Germany
| | - Rolf Mülhaupt
- Sustainability Center, University of Freiburg, Ecker-Str. 4, D-79104, Freiburg, Germany
| |
Collapse
|
18
|
Uribe-Echeverría T, Beiras R. Acute toxicity of bioplastic leachates to Paracentrotus lividus sea urchin larvae. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105605. [PMID: 35316651 DOI: 10.1016/j.marenvres.2022.105605] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
In an attempt to ensure that bioplastics, progressively replacing petrochemical-derived plastics, do not release any harmful compound to the environment, the study assessed the toxic effects of three innovative bioplastic products: polyhydroxybutyrate resin (PHB), polylactic acid cups (PLA) and a polylactic acid/polyhydroxyalkanoate 3D printing filament (PLA/PHA), together with a synthetic polyvinyl chloride (PVC) toy in Paracentrotus lividus sea urchin larvae. PVC toy was the most toxic material, likely due to the added plasticizers; remarkably, even if PHB is conceived as a nontoxic polymer, it showed a slight toxicity and Gas Chromatography-Mass Spectometry analysis (GC-MS) revealed the presence of a wide range of additives. Conversely, PLA cups and PLA/PHA filament were innocuous for the larvae, a positive outcome for these renewable solutions. Proven that additives are also used in some bioplastic formulations, they should be carefully addressed to ensure that they are as safe as regarded.
Collapse
Affiliation(s)
- Teresa Uribe-Echeverría
- Centro de Investigación Mariña, Universidade de Vigo, 36331 Vigo, Galicia, Spain; Institute of Environment and Marine Science Research (IMEDMAR), Universidad Católica de Valencia SVM, Avda. del Puerto s/n, 03710, Calpe, Alicante, Spain.
| | - Ricardo Beiras
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, 36310, Vigo, Galicia, Spain.
| |
Collapse
|
19
|
A Review on Biological Synthesis of the Biodegradable Polymers Polyhydroxyalkanoates and the Development of Multiple Applications. Catalysts 2022. [DOI: 10.3390/catal12030319] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Polyhydroxyalkanoates, or PHAs, belong to a class of biopolyesters where the biodegradable PHA polymer is accumulated by microorganisms as intracellular granules known as carbonosomes. Microorganisms can accumulate PHA using a wide variety of substrates under specific inorganic nutrient limiting conditions, with many of the carbon-containing substrates coming from waste or low-value sources. PHAs are universally thermoplastic, with PHB and PHB copolymers having similar characteristics to conventional fossil-based polymers such as polypropylene. PHA properties are dependent on the composition of its monomers, meaning PHAs can have a diverse range of properties and, thus, functionalities within this biopolyester family. This diversity in functionality results in a wide array of applications in sectors such as food-packaging and biomedical industries. In order for PHAs to compete with the conventional plastic industry in terms of applications and economics, the scale of PHA production needs to grow from its current low base. Similar to all new polymers, PHAs need continuous technological developments in their production and material science developments to grow their market opportunities. The setup of end-of-life management (biodegradability, recyclability) system infrastructure is also critical to ensure that PHA and other biobased biodegradable polymers can be marketed with maximum benefits to society. The biobased nature and the biodegradability of PHAs mean they can be a key polymer in the materials sector of the future. The worldwide scale of plastic waste pollution demands a reformation of the current polymer industry, or humankind will face the consequences of having plastic in every step of the food chain and beyond. This review will discuss the aforementioned points in more detail, hoping to provide information that sheds light on how PHAs can be polymers of the future.
Collapse
|
20
|
Ebrahimzade I, Ebrahimi-Nik M, Rohani A, Tedesco S. Towards monitoring biodegradation of starch-based bioplastic in anaerobic condition: Finding a proper kinetic model. BIORESOURCE TECHNOLOGY 2022; 347:126661. [PMID: 35007734 DOI: 10.1016/j.biortech.2021.126661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Bioplastic biodegradation showed varying behavior during the process of biodegradation. The First-order and Gompertz models are the most prevalent models for monitoring biodegradation in an anaerobic digestion (AD) process, which do not suit adequately bioplastics fermentation modeling. This research aimed at studying the kinetics of methane production during AD of starch-based bioplastic by using a large library of non-linear regressions (NLRs) and an artificial neural network (ANN). Although 26 NLR models (25 were outlined in the AD literature + 1 modified by authors) have been analyzed, 9 of them were proper predictors for the whole AD process for methane production. In the end M9, which has been proposed by authors, was selected owing to the simplicity of regression as well as good statistical criteria. Moreover, MLP-ANN could outperform the NLR model and has been selected as the superior model that can define the kinetics of bioplastic AD.
Collapse
Affiliation(s)
- Iman Ebrahimzade
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammadali Ebrahimi-Nik
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abbas Rohani
- Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Silvia Tedesco
- Department of Engineering, School of Mechanical Engineering, Manchester Metropolitan University, Dalton Building, Chester Street, Manchester M1 5GD, UK
| |
Collapse
|
21
|
Cazaudehore G, Guyoneaud R, Evon P, Martin-Closas L, Pelacho AM, Raynaud C, Monlau F. Can anaerobic digestion be a suitable end-of-life scenario for biodegradable plastics? A critical review of the current situation, hurdles, and challenges. Biotechnol Adv 2022; 56:107916. [PMID: 35122986 DOI: 10.1016/j.biotechadv.2022.107916] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Growing concern regarding non-biodegradable plastics and the impact of these materials on the environment has promoted interest in biodegradable plastics. The intensification of separate biowastes collection in most European countries has also contributed to the development of biodegradable plastics, and the subject of their end-of-life is becoming a key issue. To date, there has been relatively little research to evaluate the biodegradability of biodegradable plastics by anaerobic digestion (AD) compared to industrial and home composting. However, anaerobic digestion is a particularly promising strategy for treating biodegradable organic wastes in the context of circular waste management. This critical review aims to provide an in-depth update of anaerobic digestion of biodegradable plastics by providing a summary of the literature regarding process performances, parameters affecting biodegradability, the microorganisms involved, and some of the strategies (e.g., pretreatment, additives, and inoculum acclimation) used to enhance the degradation rate of biodegradable plastics. In addition, a critical section is dedicated to suggestions and recommendations for the development of biodegradable plastics sector and their treatment in anaerobic digestion.
Collapse
Affiliation(s)
- G Cazaudehore
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France; Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - R Guyoneaud
- Université de Pau et des Pays de l'Adour/E2S UPPA/CNRS, IPREM UMR5254, Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux, Chimie et Microbiologie de l'Environnement, 64000 Pau, France
| | - P Evon
- Laboratoire de Chimie Agro-industrielle (LCA), Université de Toulouse, ENSIACET, INRAE, INPT, 4 Allée Émile Monso, 31030 Toulouse Cedex 4, France
| | - L Martin-Closas
- Dept. Horticulture, Botany and Gardening, University of Lleida, Avda, Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - A M Pelacho
- Dept. Horticulture, Botany and Gardening, University of Lleida, Avda, Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - C Raynaud
- CATAR CRITT Agroressources, ENSIACET, 4 Allée Émile Monso, 31030 Toulouse Cedex 4, France
| | - F Monlau
- APESA, Pôle Valorisation, Cap Ecologia, 64230 Lescar, France.
| |
Collapse
|
22
|
Bacha AUR, Nabi I, Zhang L. Mechanisms and the Engineering Approaches for the Degradation of Microplastics. ACS ES&T ENGINEERING 2021; 1:1481-1501. [DOI: 10.1021/acsestengg.1c00216] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Aziz-Ur-Rahim Bacha
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
| | - Iqra Nabi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples’ Republic of China
| |
Collapse
|
23
|
Albright VC, Chai Y. Knowledge Gaps in Polymer Biodegradation Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11476-11488. [PMID: 34374525 DOI: 10.1021/acs.est.1c00994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The environmental fate of polymers has attracted growing attention in the academic, industrial, and regulatory communities as well as in the general public as global production and use of polymers continue to increase. Biodegradable polymers especially have drawn significant interest. Polymer biodegradation literature published over the past decade was reviewed to compare test methods commonly used for evaluating polymer biodegradation, and to identify key areas for improvement. This paper examines key aspects of study design for polymer biodegradation such as physical form of the test material, use of appropriate reference materials, selection of test systems, and advantages and limitations of various analytical methods for determining biodegradation. Those aspects of study design are critical for determining the outcome of polymer biodegradation studies. This paper identifies several knowledge gaps for assessing polymer biodegradation and provides four key recommendations. (1) develop standardized guidelines for each specific environmental matrix (compost, activated sludge, marine environments, etc.) that can used for all polymer types, (2) develop accelerated biodegradation test methods and predictive methods for polymers, (3) develop an integrated analytical approach using multiple simple, and effective analytical methods, and (4) develop new frameworks for assessing the overall persistence of polymers and are accepted by the greater scientific community.
Collapse
Affiliation(s)
- Vurtice C Albright
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, United States
| | - Yunzhou Chai
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, 1803 Building, Midland, Michigan 48674, United States
| |
Collapse
|
24
|
White EM, Horn J, Wang S, Crawford B, Ritchie BW, Carraway D, Locklin J. Comparative Study of the Biological Degradation of Poly(3-Hydroxybutyrate- co-3-Hydroxyhexanoate) Microbeads in Municipal Wastewater in Environmental and Controlled Laboratory Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11646-11656. [PMID: 34383486 DOI: 10.1021/acs.est.1c00974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
From April to June 2019, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3(HA)) microbead samples were exposed to an operational wastewater reclamation facility (WWRF) in an aerobic aeration basin in Athens, Georgia. Samples were withdrawn from the facility over a 13-week timeframe, and the particles were examined by Raman microscopy and thermogravimetric analysis/mass spectroscopy (TGA/MS) coupled with differential scanning calorimetry (DSC). The activated sludge from this facility was also used as an inoculum to examine carbon mineralization under controlled respirometry experiments to corroborate biological degradation rates determined from both the environmental and laboratory approach. Respirometry, Raman microscopy, and TGA/MS-DSC methods all measured similar biodegradation timelines for microbeads bound to an epoxy substrate, indicating that the three methods are temporally comparable and may be used to measure material biological degradation. Samples of epoxy-bound P3(HA) microbeads, free microbeads, the P3(HA) film, and poly(lactic acid) (PLA) film demonstrated carbon mineralization of 90.0, 89.4, 95.0, and 8.15%, respectively, relative to the cellulose positive control. Using a modified Gompertz growth model, the biological degradation rate coefficients (Rm) were determined for cellulose, P3(HA) film, epoxy-bound P3(HA) microbeads, and free P3(HA) microbeads and found to be 31.6, 30.2, 17.5, and 18.7 mL CO2·g-1·day-1, respectively. Moreover, P3(HA) microbeads can efficiently mineralize in WWRF infrastructure at a rate comparable to cellulose.
Collapse
Affiliation(s)
- Evan M White
- New Materials Institute, University of Georgia, Athens, Georgia 30602, United States
- RWDC Industries, 110 Voyles Road, Athens, Georgia 30601, United States
| | - Jessica Horn
- New Materials Institute, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Shunli Wang
- Institute of Environmental and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Benjamin Crawford
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Branson W Ritchie
- New Materials Institute, University of Georgia, Athens, Georgia 30602, United States
| | - Daniel Carraway
- RWDC Industries, 110 Voyles Road, Athens, Georgia 30601, United States
| | - Jason Locklin
- New Materials Institute, University of Georgia, Athens, Georgia 30602, United States
- College of Engineering, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
25
|
Maity S, Banerjee S, Biswas C, Guchhait R, Chatterjee A, Pramanick K. Functional interplay between plastic polymers and microbes: a comprehensive review. Biodegradation 2021; 32:487-510. [PMID: 34086181 DOI: 10.1007/s10532-021-09954-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Escalated production of plastic, their worldwide distribution and persistent nature finally results into their environmental accumulation causing severe threats to the ecological environment and biotic health. Thus, development of suitable measurements for environmental remediation of plastic may be an urgent issue in this plastic age. Some recent reviews have categorized the microbial species able to degrade different plastic polymers and the different factors effecting bio-degradation of plastic are poorly understood. This review comprehensively discusses bio-degradation of traditional and biodegradable plastic polymers both in natural and biological environment (gut microbes and fungi) to understand different factors regulating their degradation, and also shows how degradation of plastic polymers under abiotic factors influence subsequent biological degradation. Different physicochemical modifications like - breaking large polymers into small fragments by pre-treatment, functional groups enrichment, identifying potent microbial species (consortia) and engineering microbial enzymes might be crucial for bio-degradations of plastic. Effects of micro/nanoplastic and other chemical intermediates, formed during the bio-degradation of plastic, on species composition, abundance, growth, metabolism and enzymatic systems of microbes involved in the bio-degradation of plastic should be determined in future research.
Collapse
Affiliation(s)
- Sukhendu Maity
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, India
| | - Sambuddha Banerjee
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, India
| | - Chayan Biswas
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, India
| | - Rajkumar Guchhait
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, India.,Department of Zoology, Mahishadal Raj College, Purba Medinipur, India
| | - Ankit Chatterjee
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, India
| | - Kousik Pramanick
- Integrative Biology Research Unit (IBRU), Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
26
|
Golwala H, Zhang X, Iskander SM, Smith AL. Solid waste: An overlooked source of microplastics to the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144581. [PMID: 33482549 DOI: 10.1016/j.scitotenv.2020.144581] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 05/21/2023]
Abstract
Microplastics pollution is one of the most pressing environmental problems of the 21st century. While microplastics are pervasive throughout various environmental compartments, research to date has primarily focused on marine systems. Land-based microplastics sources (e.g., solid waste) have received comparatively little attention, although they account for the main flow of microplastics into aquatic environments. Solid waste microplastics sources primarily include landfill refuse, sludge, and food waste. Microplastics in these waste streams can be associated with various micropollutants that can have deleterious impacts on ecosystem health as they enter the food chain. Thus, understanding the occurrence, fate, and degradation pathways of solid waste microplastics is essential to develop comprehensive control and mitigation strategies. This study critically reviewed these key aspects of microplastics in municipal solid waste landfill refuse, sewage sludge, and food waste, and identified the interconnections of these components in the proliferation of microplastics to the environment. Additionally, microplastics related laws and regulations and their relevance to solid waste microplastics mitigation are discussed.
Collapse
Affiliation(s)
- Harmita Golwala
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Xueyao Zhang
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA
| | - Syeed Md Iskander
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA; Department of Civil and Environmental Engineering, North Dakota State University, 1410 North 14th Avenue, Fargo, ND 58102, USA.
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, 3620 South Vermont Avenue, Los Angeles, CA 90089, USA.
| |
Collapse
|
27
|
Boey JY, Mohamad L, Khok YS, Tay GS, Baidurah S. A Review of the Applications and Biodegradation of Polyhydroxyalkanoates and Poly(lactic acid) and Its Composites. Polymers (Basel) 2021; 13:1544. [PMID: 34065779 PMCID: PMC8150976 DOI: 10.3390/polym13101544] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Overconsumption of plastic goods and improper handling of petroleum-derived plastic waste have brought a plethora of negative impacts to the environment, ecosystem and human health due to its recalcitrance to degradation. These drawbacks become the main driving force behind finding biopolymers with the degradable properties. With the advancement in biopolymer research, polyhydroxyalkanoate (PHA) and poly(lacyic acid) (PLA) and its composites have been alluded to as a potential alternative to replace the petrochemical counterpart. This review highlights the current synthesis process and application of PHAs and PLA and its composites for food packaging materials and coatings. These biopolymers can be further ameliorated to enhance their applicability and are discussed by including the current commercially available packaging products. Factors influencing biodegradation are outlined in the latter part of this review. The main aim of this review article is to organize the scattered available information on various aspects of PHAs and PLA, and its composites for packaging application purposes. It is evident from a literature survey of about 140 recently published papers from the past 15 years that PLA and PHA show excellent physical properties as potential food packaging materials.
Collapse
Affiliation(s)
| | | | | | | | - Siti Baidurah
- School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Malaysia; (J.Y.B.); (L.M.); (Y.S.K.); (G.S.T.)
| |
Collapse
|
28
|
Naser AZ, Deiab I, Darras BM. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review. RSC Adv 2021; 11:17151-17196. [PMID: 35479695 PMCID: PMC9033233 DOI: 10.1039/d1ra02390j] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/02/2021] [Indexed: 11/21/2022] Open
Abstract
In spite of the fact that petroleum-based plastics are convenient in terms of fulfilling the performance requirements of many applications, they contribute significantly to a number of ecological and environmental problems. Recently, the public awareness of the negative effects of petroleum-based plastics on the environment has increased. The present utilization of natural resources cannot be sustained forever. Furthermore, oil is often subjected to price fluctuations and will eventually be depleted. The increase in the level of carbon dioxide due to the combustion of fossil fuel is causing global warming. Concerns about preservation of natural resources and climate change are considered worldwide motivations for academic and industrial researchers to reduce the consumption and dependence on fossil fuel. Therefore, bio-based polymers are moving towards becoming the favorable option to be utilized in polymer manufacturing, food packaging, and medical applications. This paper represents an overview of the feasibility of both Poly Lactic Acid (PLA) and polyhydroxyalkanoates (PHAs) as alternative materials that can replace petroleum-based polymers in a wide range of industrial applications. Physical, thermal, rheological, and mechanical properties of both polymers as well as their permeability and migration properties have been reviewed. Moreover, PLA's recyclability, sustainability, and environmental assessment have been also discussed. Finally, applications in which both polymers can replace petroleum-based plastics have been explored and provided.
Collapse
Affiliation(s)
- Ahmed Z Naser
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - I Deiab
- Advanced Manufacturing Laboratory, University of Guelph Guelph ON Canada
| | - Basil M Darras
- Department of Mechanical Engineering, American University of Sharjah Sharjah UAE
| |
Collapse
|
29
|
Mu L, Zhang L, Ma J, Zhu K, Chen C, Li A. Enhanced biomethanization of waste polylactic acid plastic by mild hydrothermal pretreatment: Taguchi orthogonal optimization and kinetics modeling. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 126:585-596. [PMID: 33862510 DOI: 10.1016/j.wasman.2021.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Polylactic acid (PLA) plastic is becoming a popular alternative to traditional petroleum-based plastics, but the biodegradability in engineered biological system is still a matter of concern. In this study, the biodegradability of PLA plastic at mesophilic and thermophilic AD were investigated, and a hydrothermal pretreatment was proposed to enhance the hydrolysis of PLA plastic and subsequent biomethanization. For raw PLA plastic, the biodegradation results indicated that PLA was hardly biodegraded at mesophilic conditions (only 50.5 ± 0.5 mL/g VS after 146 days). Although it was converted into biogas at thermophilic conditions after long incubation period (442.6 ± 1.1 mL/g VS), the long digestion time (T90 95.8 days) was destined to be infeasible for practical application. In contrast, hydrothermal pretreatment significantly enhanced the hydrolysis rates of PLA plastic in AD process from 0.001 day-1 for raw PLA plastic to 0.004-0.111 day-1. By balancing biogas production efficiency, energy and reagent cost, the conditions of 200 °C, 10 min and no alkali addition were recommended for hydrothermal pretreatment of waste PLA plastic in practice. At the optimized hydrothermal pretreatment conditions, 460.1 ± 25.0 mL/g VS was achieved in less than 30 days, which was comparable for AD of food waste (FW). Furthermore, LC-QEMS analysis proved that cleavages of ester bonds in PLA and its reaction with water molecule was the mechanism of triggering the hydrothermally decomposition of PLA. These results suggested the PLA-plastic waste co-mingled with OFMSW could be efficiently biomethanized into biogas by involving a mild hydrothermal pretreatment in practical application.
Collapse
Affiliation(s)
- Lan Mu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Lei Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China.
| | - Jiao Ma
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Xiping Road, Tianjin 300401, PR China
| | - Kongyun Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Chuanshuai Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| | - Aimin Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China
| |
Collapse
|
30
|
Amasawa E, Yamanishi T, Nakatani J, Hirao M, Sato S. Climate Change Implications of Bio-Based and Marine-Biodegradable Plastic: Evidence from Poly(3-hydroxybutyrate- co-3-hydroxyhexanoate). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3380-3388. [PMID: 33586971 DOI: 10.1021/acs.est.0c06612] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), PHBH or PHBHHx, is a novel bio-based polymer that is biodegradable in both soil and marine environments. While bio-based and biodegradability are often celebrated features to mitigate environmental problems of plastics, their life cycle environmental impacts contain uncertainties that are yet to be fully understood. To develop effective introduction schemes for PHBH, this study assessed the life cycle climate change implications of PHBH. We computed the life cycle greenhouse gas emissions (GHG) and fossil resource consumption of produce bags and spoons composed of PHBH and their fossil-based alternatives based on industrial-scale data. The products were assessed against 10 end-of-life scenarios for commercial plastics. As a result, the cradle-to-gate GHG of PHBH ranged between 0.32 and 16.5 kgCO2e/kg-PHBH depending on the land-use change assumed for the biomass production. The product-based comparative analysis presented that PHBH spoons have lower cradle-to-grave GHG emissions over their fossil-based alternatives but not with produce bags because PHBH spoons have a smaller GHG per functional unit than that of its fossil counterpart. The end-of-life scenario analysis conveyed that PHBH should be introduced to a region with a plastic waste management system that avoids methane generation and facilitates energy recovery.
Collapse
Affiliation(s)
- Eri Amasawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoki Yamanishi
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jun Nakatani
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masahiko Hirao
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shunsuke Sato
- Bioproducts Research Group, Biotechnology Research Laboratories, Pharma & Supplemental Nutrition Solutions Vehicle, Kaneka Corporation, 1-6 Miyamae-cho, Takasago-cho, Takasago, Hyogo 676-8688, Japan
| |
Collapse
|
31
|
Abraham A, Park H, Choi O, Sang BI. Anaerobic co-digestion of bioplastics as a sustainable mode of waste management with improved energy production - A review. BIORESOURCE TECHNOLOGY 2021; 322:124537. [PMID: 33341713 DOI: 10.1016/j.biortech.2020.124537] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 05/24/2023]
Abstract
The world of bioplastics has expanded rapidly in recent decades, and the new waste stream generated is creating major barriers to waste processing. Anaerobic co-digestion is to be considered one of the best options for the efficient processing of bioplastic waste due to its minimal space requirements, lower degrees of environmental pollution, and renewable energy generation. The higher carbon to nitrogen (C/N) ratio of bioplastics poses a challenge to anaerobic digestion, but co-digestion with lower C/N ratio biowastes can efficiently degrade bioplastics and improve biogas production in the system. In the future, the collection of organic waste in biodegradable plastic bags makes the waste management process easier for anaerobic digestion plants. The present review paper discusses current trends of bioplastic usage, degradation strategies, and the potential of anaerobic co-digestion for waste management with improved energy production in anaerobic digesters.
Collapse
Affiliation(s)
- Amith Abraham
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyojung Park
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Okkyoung Choi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
32
|
Niu L, Li Y, Li Y, Hu Q, Wang C, Hu J, Zhang W, Wang L, Zhang C, Zhang H. New insights into the vertical distribution and microbial degradation of microplastics in urban river sediments. WATER RESEARCH 2021; 188:116449. [PMID: 33075600 DOI: 10.1016/j.watres.2020.116449] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Sediments have been found to be one of the most important reservoirs for microplastics, providing abundant indigenous microbes. The processes involved in the distribution and degradation behavior of microplastics are complex. This study investigated the vertical distribution of microplastics (with the size < 5 mm) and the bacterial community assemblages colonizing microplastics in urban river sediments at a depth from 0 to 50 cm. The results showed that both microplastics and associated microbial communities presented vertical profiles in river sediments. The mean concentration of microplastics increased from the shallow layers to the deep layers of sediments, and smaller microplastic particles were dominant in deeper layers. A greater degradation of microplastics in deeper layers was confirmed by contact angle measurements, scanning electron microscopy and Fourier transform infrared spectroscopy-attenuated total reflectance analyses. Unlike the surrounding sediments, the whole bacterial communities on microplastics exhibited higher frequency of positive correlations in the bacterial co-occurrence network, which indicated a less stability of bacterial communities on microplastics. The indicative plastic-degrading bacteria with an average abundance of 4.33% was found in the surrounding sediments, while on the microplastics 21.37% was found. From shallow layers to deep layers, the indicative plastic-degrading bacteria significantly increased both in the abundance and in their betweenness centrality in the co-occurrence network, which suggested a potentially primary role of these bacteria in the degradation of microplastics in deep layers. This study provides new insight into the vertical distribution and the potential microbial degrading characteristics of microplastics in urban river sediments, which expanded our understanding of the fate of microplastics in aquatic environments. The observed results implied a great risk that microplastics might become smaller and more in deepened sediments and finally migrate into groundwater.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| | - Yuanyuan Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China.
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P.R. China.
| | - Jiaxin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing 210098, P.R. China
| |
Collapse
|
33
|
Exploring microbial consortia from various environments for plastic degradation. Methods Enzymol 2020; 648:47-69. [PMID: 33579417 DOI: 10.1016/bs.mie.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Many complex natural and synthetic compounds are degraded by microbial assemblages rather than single strains, due to usually limited metabolic capacities of single organisms. It can therefore be assumed that plastics can be more efficiently degraded by microbial consortia, although this field has not been as widely explored as plastic degradation by individual strains. In this chapter, we present some of the current studies on this topic and methods to enrich and cultivate plastic-degrading microbial consortia from aquatic and terrestrial ecosystems, including substrate preparation and biodegradation assessment. We focus on both conventional and biodegradable plastics as potential growth substrates. Cultivation methods for both aerobic and anaerobic microorganisms are presented.
Collapse
|
34
|
Biodegradation of Poly (Butylene Succinate) (PBS)/Stearate Modified Magnesium-Aluminium Layered Double Hydroxide Composites under Marine Conditions Prepared via Melt Compounding. Molecules 2020; 25:molecules25235766. [PMID: 33297487 PMCID: PMC7730599 DOI: 10.3390/molecules25235766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022] Open
Abstract
In the present work, polybutylene succinate (PBS)/stearate modified magnesium-aluminium layered double hydroxide (St-Mg-Al LDH) composites were prepared via melt processing and the effect of different loadings of St-Mg-Al LDH on the degradation behaviour of PBS under marine conditions was investigated. The morphological, mechanical and thermal characteristics of the composites were studied using different characterisation techniques. Optical imaging and scanning electron microscopy revealed that the incorporation of St-Mg-Al LDH accelerates the degradation of PBS along with the activity of microorganisms adhered to the composite films. PBS/St-Mg-Al LDH composites are found to have lower thermal degradation temperatures than those of pure PBS. The decrease in thermal stability is correlated with the degradation of PBS due to the catalytic action Mg and Al present in LDH. Tensile and DMA analysis revealed that the addition of St-Mg-Al LDH did not have a significant impact on the mechanical properties of PBS.
Collapse
|
35
|
Bartels M, Gutschmann B, Widmer T, Grimm T, Neubauer P, Riedel SL. Recovery of the PHA Copolymer P(HB- co-HHx) With Non-halogenated Solvents: Influences on Molecular Weight and HHx-Content. Front Bioeng Biotechnol 2020; 8:944. [PMID: 32903820 PMCID: PMC7438878 DOI: 10.3389/fbioe.2020.00944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022] Open
Abstract
Biodegradable and biocompatible polyhydroxyalkanoates (PHAs) are promising alternatives to conventional plastics. Based on the chain length of their monomers they are classified as short chain length (scl-) or medium chain length (mcl-) PHA polymers. The type of monomers, the composition and the molecular weight (MW) define the polymer properties. To accelerate the use of PHA as a bulk material, the downstream associated costs need to be minimized. This study focuses on the evaluation of non-halogenated solvents, especially acetone as a scl-PHA non-solvent, for the recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) - P(HB-co-HHx) - with an mcl-HHx content >15 mol% and a MW average (M w) < 2 × 105 Da. Solvents and precipitants were chosen regarding zeotrope formation, boiling point differences, and toxicity. Non-halogenated solvent-precipitant pairs were evaluated regarding the MW characteristics (MWCs) of the extracted polymer. Acetone and 2-propanol as a low toxic and zeotropic solvent-precipitant pair was evaluated at different extraction temperatures and multiple extraction times. The extraction process was further evaluated by using impure acetone for the extraction and implementing a multi-stage extraction process. Additionally, P(HB-co-HHx) extracted with three different solvents was characterized by 1H and 13C-APT NMR. The screening of precipitants resulted in a negative influence on the MWCs by ethanol precipitation for extractions with acetone and ethyl acetate, respectively. It was observed, that extractions with acetone at 70°C extracted a higher fraction of PHA from the cells compared to extractions at RT, but the M w was decreased by 9% in average. Acetone with a 2-propanol fraction of up to 30% was still able to extract the polymer 95% as efficient as pure acetone. Additionally, when acetone and ethyl acetate were used in a multi-stage extraction process, a two-stage process was sufficient to extract 98-99% of the polymer from the cells. 1H and 13C-APT NMR analysis confirmed the monomer fraction and structure of the extracted polymers and revealed a random copolymer structure. The presented strategy can be further developed to an ecological and economically feasible PHA downstream process and thus contributes to the commercialization of low-cost PHAs.
Collapse
Affiliation(s)
| | - Björn Gutschmann
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | | | | | - Peter Neubauer
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Sebastian L Riedel
- Technische Universität Berlin, Institute of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| |
Collapse
|
36
|
Kaur G, Wong JWC, Kumar R, Patria RD, Bhardwaj A, Uisan K, Johnravindar D. Value Addition of Anaerobic Digestate From Biowaste: Thinking Beyond Agriculture. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s40518-020-00148-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Miller JI, Techtmann S, Fortney J, Mahmoudi N, Joyner D, Liu J, Olesen S, Alm E, Fernandez A, Gardinali P, GaraJayeva N, Askerov FS, Hazen TC. Oil Hydrocarbon Degradation by Caspian Sea Microbial Communities. Front Microbiol 2019; 10:995. [PMID: 31143165 PMCID: PMC6521576 DOI: 10.3389/fmicb.2019.00995] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/18/2019] [Indexed: 12/03/2022] Open
Abstract
The Caspian Sea, which is the largest landlocked body of water on the planet, receives substantial annual hydrocarbon input from anthropogenic sources (e.g., industry, agriculture, oil exploration, and extraction) and natural sources (e.g., mud volcanoes and oil seeps). The Caspian Sea also receives substantial amounts of runoff from agricultural and municipal sources, containing nutrients that have caused eutrophication and subsequent hypoxia in the deep, cold waters. The effect of decreasing oxygen saturation and cold temperatures on oil hydrocarbon biodegradation by a microbial community is not well characterized. The purpose of this study was to investigate the effect of oxic and anoxic conditions on oil hydrocarbon biodegradation at cold temperatures by microbial communities derived from the Caspian Sea. Water samples were collected from the Caspian Sea for study in experimental microcosms. Major taxonomic orders observed in the ambient water samples included Flavobacteriales, Actinomycetales, and Oceanospirillales. Microcosms were inoculated with microbial communities from the deepest waters and amended with oil hydrocarbons for 17 days. Hydrocarbon degradation and shifts in microbial community structure were measured. Surprisingly, oil hydrocarbon biodegradation under anoxic conditions exceeded that under oxic conditions; this was particularly evident in the degradation of aromatic hydrocarbons. Important microbial taxa associated with the anoxic microcosms included known oil degraders such as Oceanospirillaceae. This study provides knowledge about the ambient community structure of the Caspian Sea, which serves as an important reference point for future studies. Furthermore, this may be the first report in which anaerobic biodegradation of oil hydrocarbons exceeds aerobic biodegradation.
Collapse
Affiliation(s)
- John I Miller
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen Techtmann
- Biosciences Division, Michigan Technological University, Houghton, MI, United States
| | - Julian Fortney
- Department of Earth System Science, Stanford University, Stanford, CA, United States
| | - Nagissa Mahmoudi
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
| | - Dominique Joyner
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Jiang Liu
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Scott Olesen
- Harvard School of Public Health, Cambridge, MA, United States
| | - Eric Alm
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Adolfo Fernandez
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | - Piero Gardinali
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, United States
| | | | | | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States.,Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
38
|
Dilkes-Hoffman LS, Lant PA, Laycock B, Pratt S. The rate of biodegradation of PHA bioplastics in the marine environment: A meta-study. MARINE POLLUTION BULLETIN 2019; 142:15-24. [PMID: 31232288 DOI: 10.1016/j.marpolbul.2019.03.020] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
There is a reasonably extensive body of literature recording mass loss of polyhydroxyalkanoates (PHAs) (a class of biodegradable plastics) in the natural marine environment. However, to date, this research has been very disparate. Thus, it remains unclear what the timeframe for the biodegradation of such marine biodegradable plastics actually is. The aim of this work was to determine the rate of biodegradation of PHA in the marine environment and apply this to the lifetime estimation of PHA products. This provides the clarification required as to what 'marine biodegradation of PHA' means in practicality and allows the risks and benefits of using PHA to be transparently discussed. It was determined that the mean rate of biodegradation of PHA in the marine environment is 0.04-0.09 mg·day-1·cm-2 (p = 0.05) and that, for example, a PHA water bottle could be expected to take between 1.5 and 3.5 years to completely biodegrade.
Collapse
Affiliation(s)
- Leela Sarena Dilkes-Hoffman
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Paul Andrew Lant
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Bronwyn Laycock
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Steven Pratt
- School of Chemical Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
39
|
Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, Barbe V, Meistertzheim AL, Ghiglione JF. Microbial Ecotoxicology of Marine Plastic Debris: A Review on Colonization and Biodegradation by the "Plastisphere". Front Microbiol 2019; 10:865. [PMID: 31073297 PMCID: PMC6497127 DOI: 10.3389/fmicb.2019.00865] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 04/04/2019] [Indexed: 01/09/2023] Open
Abstract
Over the last decades, it has become clear that plastic pollution presents a global societal and environmental challenge given its increasing presence in the oceans. A growing literature has focused on the microbial life growing on the surfaces of these pollutants called the "plastisphere," but the general concepts of microbial ecotoxicology have only rarely been integrated. Microbial ecotoxicology deals with (i) the impact of pollutants on microbial communities and inversely (ii) how much microbes can influence their biodegradation. The goal of this review is to enlighten the growing literature of the last 15 years on microbial ecotoxicology related to plastic pollution in the oceans. First, we focus on the impact of plastic on marine microbial life and on the various functions it ensures in the ecosystems. In this part, we also discuss the driving factors influencing biofilm development on plastic surfaces and the potential role of plastic debris as vector for dispersal of harmful pathogen species. Second, we give a critical view of the extent to which marine microorganisms can participate in the decomposition of plastic in the oceans and of the relevance of current standard tests for plastic biodegradability at sea. We highlight some examples of metabolic pathways of polymer biodegradation. We conclude with several questions regarding gaps in current knowledge of plastic biodegradation by marine microorganisms and the identification of possible directions for future research.
Collapse
Affiliation(s)
- Justine Jacquin
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Jingguang Cheng
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Charlène Odobel
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Caroline Pandin
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Pascal Conan
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Mireille Pujo-Pay
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| | - Valérie Barbe
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat á I’Énergie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Évry, France
| | - Anne-Leila Meistertzheim
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
- Plastic@Sea, Observatoire Océanographique de Banyuls-sur-Mer, Banyuls-sur-Mer, France
| | - Jean-François Ghiglione
- UMR 7621, CNRS, Laboratoire d’Océanographie Microbienne, Observatoire Océanologique de Banyuls-sur-Mer, Sorbonne Université, Banyuls-sur-Mer, France
| |
Collapse
|