1
|
Liu S, Han J, Yao L, Li H, Xin G, Ho SH, Huang X. Integrated multilevel investigation of photosynthesis revealed the algal response distinction to differentially charged nanoplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134815. [PMID: 38885582 DOI: 10.1016/j.jhazmat.2024.134815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
Nanoplastics (NPs), especially those with different charges, as one of emerging contaminants pose a threat to aquatic ecosystems. Although differentially charged NPs could induce distinct biological effects, mechanistic understanding of the critical physiological processes of aquatic organisms from an integrated multilevel perspective on aquatic organisms is still uncertain. Herein, multi-effects of differentially charged nanosized polystyrene (nPS) including neutral nPS, nPS-COOH, and nPS-NH2 on the photosynthesis-related physiological processes of algae were explored at the population, individual, subcellular, protein, and transcriptional levels. Results demonstrated that both nPS and nPS-COOH exhibited hormesis to algal photosynthesis but nPS-NH2 triggered severe inhibition. As for nPS-NH2, the integrity of algal subcellular structure, chlorophyll biosynthesis, and expression of photosynthesis-related proteins and genes were interfered. Intracellular NPs' content in nPS treatment was 25.64 % higher than in nPS-COOH treatment, and the content of chloroplasts in PS and nPS-COOH treatment were 3.09 % and 4.56 % higher than control, respectively. Furthermore, at the molecular levels, more photosynthesis-related proteins and genes were regulated under nPS-COOH exposure than those exposed to nPS. Light-harvesting complex II could be recognized as an underlying explanation for different effects between nPS and nPS-COOH. This study first provides a novel approach to assess the ecological risks of NPs at an integrated multilevel.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Linjie Yao
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Huijun Li
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Huanghe Road 73, Harbin 150090, PR China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China.
| |
Collapse
|
2
|
Methodology for Phytoplankton Taxonomic Group Identification towards the Development of a Lab-on-a-Chip. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This paper presents the absorbance and fluorescence optical properties of various phytoplankton species, looking to achieve an accurate method to detect and identify a number of phytoplankton taxonomic groups. The methodology to select the excitation and detection wavelengths that results in superior identification of phytoplankton is reported. The macroscopic analyses and the implemented methodology are the base for designing a lab-on-a-chip device for a phytoplankton group identification, based on cell analysis with multi-wavelength lighting excitation, aiming for a cheap and portable platform. With such methodology in a lab-on-a-chip device, the analysis of the phytoplankton cells’ optical properties, e.g., fluorescence, diffraction, absorption and reflection, will be possible. This device will offer, in the future, a platform for continuous, autonomous and in situ underwater measurements, in opposition to the conventional methodology. A proof-of-concept device with LED light excitation at 450 nm and a detection photodiode at 680 nm was fabricated. This device was able to quantify the concentration of the phytoplankton chlorophyll a. A lock-in amplifier electronic circuit was developed and integrated in a portable and low-cost sensor, featuring continuous, autonomous and in situ underwater measurements. This device has a detection limit of 0.01 µ/L of chlorophyll a, in a range up to 300 µg/L, with a linear voltage output with chlorophyll concentration.
Collapse
|
3
|
Rodríguez-Herrera J, Cabado AG, Bodelón G, Cunha SC, Pinto V, Fernandes JO, Lago J, Muñoz S, Pastoriza-Santos I, Sousa P, Gonçalves L, López-Cabo M, Pérez-Juste J, Santos J, Minas G. Methodological Approaches for Monitoring Five Major Food Safety Hazards Affecting Food Production in the Galicia-Northern Portugal Euroregion. Foods 2021; 11:84. [PMID: 35010210 PMCID: PMC8750003 DOI: 10.3390/foods11010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
The agri-food industry has historically determined the socioeconomic characteristics of Galicia and Northern Portugal, and it was recently identified as an area for collaboration in the Euroregion. In particular, there is a need for action to help to ensure the provision of safe and healthy foods by taking advantage of key enabling technologies. The goals of the FOODSENS project are aligned with this major objective, specifically with the development of biosensors able to monitor hazards relevant to the safety of food produced in the Euroregion. The present review addresses the state of the art of analytical methodologies and techniques-whether commercially available or in various stages of development-for monitoring food hazards, such as harmful algal blooms, mycotoxins, Listeria monocytogenes, allergens, and polycyclic aromatic hydrocarbons. We discuss the pros and cons of these methodologies and techniques and address lines of research for point-of-care detection. Accordingly, the development of miniaturized automated monitoring strategies is considered a priority in terms of health and economic interest, with a significant impact in several areas, such as food safety, water quality, pollution control, and public health. Finally, we present potential market opportunities that could result from the availability of rapid and reliable commercial methodologies.
Collapse
Affiliation(s)
- Juan Rodríguez-Herrera
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (S.M.); (M.L.-C.)
| | - Ana G. Cabado
- ANFACO-CECOPESCA, Ctra. Colexio Universitario, 16, 36310 Vigo, Spain; (A.G.C.); (J.L.)
| | - Gustavo Bodelón
- CINBIO, Campus Universitario As Lagoas, Universidade de Vigo, 36310 Vigo, Spain; (G.B.); (I.P.-S.); (J.P.-J.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Department of Chemical Sciences, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.C.C.); (J.O.F.); (J.S.)
| | - Vânia Pinto
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Department of Chemical Sciences, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.C.C.); (J.O.F.); (J.S.)
| | - Jorge Lago
- ANFACO-CECOPESCA, Ctra. Colexio Universitario, 16, 36310 Vigo, Spain; (A.G.C.); (J.L.)
| | - Silvia Muñoz
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (S.M.); (M.L.-C.)
| | - Isabel Pastoriza-Santos
- CINBIO, Campus Universitario As Lagoas, Universidade de Vigo, 36310 Vigo, Spain; (G.B.); (I.P.-S.); (J.P.-J.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - Paulo Sousa
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| | - Luís Gonçalves
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| | - Marta López-Cabo
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC), 36208 Vigo, Spain; (S.M.); (M.L.-C.)
| | - Jorge Pérez-Juste
- CINBIO, Campus Universitario As Lagoas, Universidade de Vigo, 36310 Vigo, Spain; (G.B.); (I.P.-S.); (J.P.-J.)
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36310 Vigo, Spain
| | - João Santos
- LAQV-REQUIMTE, Laboratory of Bromatology and Hidrology, Department of Chemical Sciences, Facultaty of Pharmacy, University of Porto, Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal; (S.C.C.); (J.O.F.); (J.S.)
| | - Graça Minas
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (P.S.); (L.G.); (G.M.)
| |
Collapse
|
4
|
Wiorek A, Hussain G, Molina-Osorio AF, Cuartero M, Crespo GA. Reagentless Acid-Base Titration for Alkalinity Detection in Seawater. Anal Chem 2021; 93:14130-14137. [PMID: 34652903 PMCID: PMC8552213 DOI: 10.1021/acs.analchem.1c02545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Herein, we report
on a reagentless electroanalytical methodology
for automatized acid–base titrations of water samples that
are confined into very thin spatial domains. The concept is based
on the recent discovery from our group (WiorekA.2019, 91, 14951−1495931691565), in which polyaniline (PANI) films were found to be an excellent
material to release a massive charge of protons in a short time, achieving
hence the efficient (and controlled) acidification of a sample. We
now demonstrate and validate the analytical usefulness of this approach
with samples collected from the Baltic Sea: the titration protocol
indeed acts as an alkalinity sensor via the calculation of the proton
charge needed to reach pH 4.0 in the sample, as per the formal definition
of the alkalinity parameter. In essence, the alkalinity sensor is
based on the linear relationship found between the released charge
from the PANI film and the bicarbonate concentration in the sample
(i.e., the way to express alkalinity measurements). The observed alkalinity
in the samples presented a good agreement with the values obtained
by manual (classical) acid–base titrations (discrepancies <10%).
Some crucial advantages of the new methodology are that titrations
are completed in less than 1 min (end point), the PANI film can be
reused at least 74 times over a 2 week period (<5% of decrease
in the released charge), and the utility of the PANI film to even
more decrease the final pH of the sample (pH ∼2) toward applications
different from alkalinity detection. Furthermore, the acidification
can be accomplished in a discrete or continuous mode depending on
the application demands. The new methodology is expected to impact
the future digitalization of in situ acid–base titrations to
obtain high-resolution data on alkalinity in water resources.
Collapse
Affiliation(s)
- Alexander Wiorek
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Ghulam Hussain
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Andres F Molina-Osorio
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Science in Chemistry, Biochemistry and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
| |
Collapse
|
5
|
Hsiao TC, Lin AYC, Lien WC, Lin YC. Size distribution, biological characteristics and emerging contaminants of aerosols emitted from an urban wastewater treatment plant. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121809. [PMID: 31843411 DOI: 10.1016/j.jhazmat.2019.121809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/09/2019] [Accepted: 11/30/2019] [Indexed: 05/21/2023]
Abstract
Air-liquid exchange process could spread pathogens and pharmaceutical emerging pollutants into the air as aerosol particles in an Urban wastewater treatment plants (UWTPs). These particles can later be transported to places where such pollution is unforeseen. In this study, measurements were conducted in the aeration area of a UWTP in northern Taiwan. According to this investigation, nanoparticles are major contributors to both the number and volume concentration of particles. Most fluorescent particles may be bacterial aggregates or fungal species. Moreover, nine common emerging contaminants were analyzed and found in both air and water samples. Among these contaminants, the most abundant chemicals in the air were erythromycin-H2O (191.45 pg/m3) and methamphetamine (39.02 pg/m3). These results imply that UWTPs could be an emission source of emerging contaminants and bioaerosols, and the potential risk of inhalation exposure should be carefully evaluated.
Collapse
Affiliation(s)
- Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei, 106, Taiwan.
| | - Angela Yu-Chen Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei, 106, Taiwan
| | - Wan-Chien Lien
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei, 106, Taiwan
| | - Yen-Ching Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei, 106, Taiwan
| |
Collapse
|
6
|
Zieger SE, Seoane S, Laza-Martínez A, Knaus A, Mistlberger G, Klimant I. Spectral Characterization of Eight Marine Phytoplankton Phyla and Assessing a Pigment-Based Taxonomic Discriminant Analysis for the in Situ Classification of Phytoplankton Blooms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:14266-14274. [PMID: 30451494 DOI: 10.1021/acs.est.8b04528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Early stage identification of harmful algal blooms (HABs) has gained significance for marine monitoring systems over the years. Various approaches for in situ classification have been developed. Among them, pigment-based taxonomic classification is one promising technique for in situ characterization of bloom compositions, although it is yet underutilized in marine monitoring programs. To demonstrate the applicability and importance of this powerful approach for monitoring programs, we combined an ultra low-cost and miniaturized multichannel fluorometer with Fisher's linear discriminant analysis (LDA). This enables the real-time characterization of algal blooms at order level based on their spectral properties. The classification capability of the algorithm was examined with a leave-one-out cross validation of 53 different unialgal cultures conducted in terms of standard statistical measures and independent figures of merit. The separation capability of the linear discriminant analysis was further successfully examined in mixed algal suspensions. Besides this, the impact of the growing status on the classification capability was assessed. Further, we provide a comprehensive study of spectral features of eight different phytoplankton phyla including an extensive study of fluorescence excitation spectra and marker pigments analyzed via HPLC. The analyzed phytoplankton species belong to the phyla of Cyanobacteria, Dinophyta (Dinoflagellates), Bacillariophyta (Diatoms), Haptophyta, Chlorophyta, Ochrophyta, Cryptophyta, and Euglenophyta.
Collapse
Affiliation(s)
- Silvia E Zieger
- Optical Sensors Group, Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Graz , Austria
| | - Sergio Seoane
- Plant biology and Ecology Department, Faculty of Science and Technology , University of the Basque Country (UPV/EHU) , Leioa 48940 , Spain
| | - Aitor Laza-Martínez
- Plant biology and Ecology Department, Faculty of Science and Technology , University of the Basque Country (UPV/EHU) , Leioa 48940 , Spain
| | - Anna Knaus
- Optical Sensors Group, Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Graz , Austria
| | - Günter Mistlberger
- Optical Sensors Group, Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Graz , Austria
| | - Ingo Klimant
- Optical Sensors Group, Institute of Analytical Chemistry and Food Chemistry , Graz University of Technology , Graz , Austria
| |
Collapse
|