1
|
Hao YY, Zhu YJ, Yan RQ, Gu B, Zhou XQ, Wei RR, Wang C, Feng J, Huang Q, Liu YR. Important Roles of Thiols in Methylmercury Uptake and Translocation by Rice Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6765-6773. [PMID: 35483101 DOI: 10.1021/acs.est.2c00169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The bioaccumulation of the neurotoxin methylmercury (MeHg) in rice is a significant concern due to its potential risk to humans. Thiols have been known to affect MeHg bioavailability in microorganisms, but how thiols influence MeHg accumulation in rice plants remains unknown. Here, we investigated effects of common low-molecular-weight thiols, including cysteine (Cys), glutathione (GSH), and penicillamine (PEN), on MeHg uptake and translocation by rice plants. Results show that rice roots can rapidly take up MeHg, and this process is influenced by the types and concentrations of thiols in the system. The presence of Cys facilitated MeHg uptake by roots and translocation to shoots, while GSH could only promote MeHg uptake, but not translocation, by roots. Conversely, PEN significantly inhibited MeHg uptake and translocation to shoots. Using labeled 13Cys assays, we also found that MeHg uptake was coupled with Cys accumulation in rice roots. Moreover, analyses of comparative transcriptomics revealed that key genes associated with metallothionein and SULTR transporter families may be involved in MeHg uptake. These findings provide new insights into the uptake and translocation of MeHg in rice plants and suggest potential roles of thiol attributes in affecting MeHg bioavailability and bioaccumulation in rice.
Collapse
Affiliation(s)
- Yun-Yun Hao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Jie Zhu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruo-Qun Yan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xin-Quan Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ren-Rui Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiao Feng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
2
|
Manceau A, Nagy KL, Glatzel P, Bourdineaud JP. Acute Toxicity of Divalent Mercury to Bacteria Explained by the Formation of Dicysteinate and Tetracysteinate Complexes Bound to Proteins in Escherichia coli and Bacillus subtilis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3612-3623. [PMID: 33629845 DOI: 10.1021/acs.est.0c05202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacteria are the most abundant organisms on Earth and also the major life form affected by mercury (Hg) poisoning in aquatic and terrestrial food webs. In this study, we applied high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy to bacteria with intracellular concentrations of Hg as low as 0.7 ng/mg (ppm) for identifying the intracellular molecular forms and trafficking pathways of Hg in bacteria at environmentally relevant concentrations. Gram-positive Bacillus subtilis and Gram-negative Escherichia coli were exposed to three Hg species: HgCl2, Hg-dicysteinate (Hg(Cys)2), and Hg-dithioglycolate (Hg(TGA)2). In all cases, Hg was transformed into new two- and four-coordinate cysteinate complexes, interpreted to be bound, respectively, to the consensus metal-binding CXXC motif and zinc finger domains of proteins, with glutathione acting as a transfer ligand. Replacement of zinc cofactors essential to gene regulatory proteins with Hg would inhibit vital functions such as DNA transcription and repair and is suggested to be a main cause of Hg genotoxicity.
Collapse
Affiliation(s)
- Alain Manceau
- Université Grenoble Alpes, CNRS, ISTerre, CS 40700, 38058 Grenoble, France
| | - Kathryn L Nagy
- Department of Earth and Environmental Sciences, University of Illinois at Chicago, MC-186, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Pieter Glatzel
- European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France
| | - Jean-Paul Bourdineaud
- Institut Européen de Chimie et Biologie, Université de Bordeaux, CNRS, UMR 5234, 2 rue Escarpit, 33607 Pessac, France
| |
Collapse
|
3
|
Thomas SA, Mishra B, Myneni SCB. Cellular Mercury Coordination Environment, and Not Cell Surface Ligands, Influence Bacterial Methylmercury Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3960-3968. [PMID: 32097551 DOI: 10.1021/acs.est.9b05915] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conversion of inorganic mercury (Hg(II)) to methylmercury (MeHg) is central to the understanding of Hg toxicity in the environment. Hg methylation occurs in the cytosol of certain obligate anaerobic bacteria and archaea possessing the hgcAB gene cluster. However, the processes involved in Hg(II) biouptake and methylation are not well understood. Here, we examined the role of cell surface thiols, cellular ligands with the highest affinity for Hg(II) that are located at the interface between the outer membrane and external medium, on the sorption and methylation of Hg(II) by Geobacter sulfurreducens. The effect of added cysteine (Cys), which is known to greatly enhance Hg(II) biouptake and methylation, was also explored. By quantitatively blocking surface thiols with a thiol binding ligand (qBBr), we show that surface thiols have no significant effect on Hg(II) methylation, regardless of Cys addition. The results also identify a significant amount of cell-associated Hg-S3/S4 species, as studied by high energy-resolution X-ray absorption near edge structure (HR-XANES) spectroscopy, under conditions of high MeHg production (with Cys addition). In contrast, Hg-S2 are the predominant species during low MeHg production. Hg-S3/S4 species may be related to enhanced Hg(II) biouptake or the ability of Hg(II) to become methylated by HgcAB and should be further explored in this context.
Collapse
Affiliation(s)
- Sara A Thomas
- Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, United States
| | - Bhoopesh Mishra
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Satish C B Myneni
- Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Skrobonja A, Gojkovic Z, Soerensen AL, Westlund PO, Funk C, Björn E. Uptake Kinetics of Methylmercury in a Freshwater Alga Exposed to Methylmercury Complexes with Environmentally Relevant Thiols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13757-13766. [PMID: 31682417 DOI: 10.1021/acs.est.9b05164] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cellular uptake of dissolved methylmercury (MeHg) by phytoplankton is the most important point of entry for MeHg into aquatic food webs. However, the process is not fully understood. In this study we investigated the influence of chemical speciation on rate constants for MeHg accumulation by the freshwater green microalga Selenastrum capricornutum. We used six MeHg-thiol complexes with moderate but important structural differences commonly found in the environment. Rate constants for MeHg interactions with cells were determined for the MeHg-thiol treatments and a control assay containing the thermodynamically less stable MeHgOH complex. We found both elevated amounts of MeHg associated with whole cells and higher MeHg association rate constants in the control compared to the thiol treatments. Furthermore, the association rate constants were lower when algae were exposed to MeHg complexes with thiols of larger size and more "branched" chemical structure compared to complexes with simpler structure. The results further demonstrated that the thermodynamic stability and chemical structure of MeHg complexes in the medium is an important controlling factor for the rate of MeHg interactions with the cell surface, but not for the MeHg exchange rate across the membrane. Our results are in line with uptake mechanisms involving formation of MeHg complexes with cell surface ligands prior to internalization.
Collapse
Affiliation(s)
| | - Zivan Gojkovic
- Umeå University , Department of Chemistry , SE-901 87 Umeå , Sweden
| | - Anne L Soerensen
- Stockholm University , Department of Environmental Science and Analytical Chemistry , SE-106 97 Stockholm , Sweden
| | | | - Christiane Funk
- Umeå University , Department of Chemistry , SE-901 87 Umeå , Sweden
| | - Erik Björn
- Umeå University , Department of Chemistry , SE-901 87 Umeå , Sweden
| |
Collapse
|