1
|
He T, Lin W, Yang S, Du J, Giri B, Feng C, Gilliam FS, Zhang F, Zhang X, Zhang X. Arbuscular mycorrhizal fungi reduce soil N 2O emissions by altering root traits and soil denitrifier community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173065. [PMID: 38723969 DOI: 10.1016/j.scitotenv.2024.173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) increase the ability of plants to obtain nitrogen (N) from the soil, and thus can affect emissions of nitrous oxide (N2O), a long-lived potent greenhouse gas. However, the mechanisms underlying the effects of AMF on N2O emissions are still poorly understood, particularly in agroecosystems with different forms of N fertilizer inputs. Utilizing a mesocosm experiment in field, we examined the effects of AMF on N2O emissions via their influence on maize root traits and denitrifying microorganisms under ammonia and nitrate fertilizer input using 15N isotope tracer. Here we show that the presence of AMF alone or both maize roots and AMF increased maize biomass and their 15N uptake, root length, root surface area, and root volume, but led to a reduction in N2O emissions under both N input forms. Random forest model showed that root length and surface area were the most important predictors of N2O emissions. Additionally, the presence of AMF reduced the (nirK + nirS)/nosZ ratio by increasing the relative abundance of nirS-Bradyrhizobium and Rubrivivax with ammonia input, but reducing nosZ-Azospirillum, Cupriavidus and Rhodopseudomonas under both fertilizer input. Further, N2O emissions were significantly and positively correlated with the nosZ-type Azospirillum, Cupriavidus and Rhodopseudomonas, but negatively correlated with the nirS-type Bradyrhizobium and Rubrivivax. These results indicate that AMF reduce N2O emissions by increasing root length to explore N nutrients and altering the community composition of denitrifiers, suggesting that effective management of N fertilizer forms interacting with the rhizosphere microbiome may help mitigate N2O emissions under future N input scenarios.
Collapse
Affiliation(s)
- Tangqing He
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shuo Yang
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Jiaqi Du
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Bhoopander Giri
- Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi, India
| | - Cheng Feng
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Frank S Gilliam
- Department of Earth and Environmental Sciences, University of West Florida, Pensacola FL32514, USA
| | - Fuliang Zhang
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Xuelin Zhang
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Tu X, Wang J, Liu X, Liu Y, Zhang Y, Uwiragiye Y, Elrys AS, Zhang J, Cai Z, Cheng Y, Müller C. Warming-Induced Stimulation of Soil N 2O Emissions Counteracted by Elevated CO 2 from Nine-Year Agroecosystem Temperature and Free Air Carbon Dioxide Enrichment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6215-6225. [PMID: 38546713 DOI: 10.1021/acs.est.3c10775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Globally, agricultural soils account for approximately one-third of anthropogenic emissions of the potent greenhouse gas and stratospheric ozone-depleting substance nitrous oxide (N2O). Emissions of N2O from agricultural soils are affected by a number of global change factors, such as elevated air temperatures and elevated atmospheric carbon dioxide (CO2). Yet, a mechanistic understanding of how these climatic factors affect N2O emissions in agricultural soils remains largely unresolved. Here, we investigate the soil N2O emission pathway using a 15N tracing approach in a nine-year field experiment using a combined temperature and free air carbon dioxide enrichment (T-FACE). We show that the effect of CO2 enrichment completely counteracts warming-induced stimulation of both nitrification- and denitrification-derived N2O emissions. The elevated CO2 induced decrease in pH and labile organic nitrogen (N) masked the stimulation of organic carbon and N by warming. Unexpectedly, both elevated CO2 and warming had little effect on the abundances of the nitrifying and denitrifying genes. Overall, our study confirms the importance of multifactorial experiments to understand N2O emission pathways from agricultural soils under climate change. This better understanding is a prerequisite for more accurate models and the development of effective options to combat climate change.
Collapse
Affiliation(s)
- Xiaoshun Tu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Jing Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, and Center of Agricultural and Climate Change, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Liu
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yinghua Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yves Uwiragiye
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Department of Agriculture, Faculty of Agriculture, Environmental Management and Renewable Energy, University of Technology and Arts of Byumba, POB 25 Byumba, Rwanda
| | - Ahmed S Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing 210023, China
| | - Yi Cheng
- School of Geography, Nanjing Normal University, Nanjing 210023, China
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
- Soil and Fertilizer & Resources and Environmental Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Christoph Müller
- Liebig Centre of Agroecology and Climate Impact Research, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Institute of Plant Ecology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
3
|
Gou X, Hu Y, Ni H, Wang X, Qiu L, Chang X, Shao M, Wei G, Wei X. Arbuscular mycorrhizal fungi alleviate erosional soil nitrogen loss by regulating nitrogen cycling genes and enzymes in experimental agro-ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167425. [PMID: 37774877 DOI: 10.1016/j.scitotenv.2023.167425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Nutrient losses from agricultural ecosystems are increasingly threatening global environmental and human health. Although arbuscular mycorrhizal (AM) fungi have the potential to regulate soil nitrogen (N) loss by enhancing plant uptake and soil particle immobilization, the microbial mechanism behind such mycorrhizal effect is unknown. Herein, by conducting a simulated erosion experiment, we compared the effects of exogenous AM fungal inoculation (Funneliformis mosseae) on the gene abundances and enzyme activities of N-cycling processes, and associated such effect to N uptake and loss. The experiment was composed of combinations of two AM fungal treatments (control vs. AM fungal inoculation), two crops (maize vs. soybean) and two slopes of the plots (6° vs. 20°). The experimental plots subjected to natural rainfalls to simulate the erosion events. We showed that the effects of AM fungi were greater in the maize soils than in the soybean soils. In the maize soils, AM fungi increased the abundances of N-fixing (+81.1 %) and nitrifying genes (+200.7 %) and N cycling enzyme activity (+22.3 %). In the soybean soils, AM fungi increased the N-fixing gene abundance (+36.9 %) but decreased the abundance of nitrifying genes (-18.9 %). The abundance of N-fixing gene was positively correlated with N uptake but negatively correlated with N loss. Additionally, AM fungi enhanced the effects of mycorrhizal colonization and moisture but decreased the effects of nutrients on soil microbial metrics related to N-cycling processes. Therefore, AM fungal inoculation enhanced N uptake and reduced N loss by increasing N-fixing gene abundance, and that AM fungi should be preferably used for the low N environments or for the ecosystems highly limited by or competing for N.
Collapse
Affiliation(s)
- Xiaomei Gou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, the Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaxian Hu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, the Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaqian Ni
- College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Wang
- College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, the Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xingchen Chang
- College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, the Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, the Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, the Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; College of Soil & Water Conservation Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Zhang K, Qiu Y, Zhao Y, Wang S, Deng J, Chen M, Xu X, Wang H, Bai T, He T, Zhang Y, Chen H, Wang Y, Hu S. Moderate precipitation reduction enhances nitrogen cycling and soil nitrous oxide emissions in a semi-arid grassland. GLOBAL CHANGE BIOLOGY 2023; 29:3114-3129. [PMID: 36892227 DOI: 10.1111/gcb.16672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
The ongoing climate change is predicted to induce more weather extremes such as frequent drought and high-intensity precipitation events, causing more severe drying-rewetting cycles in soil. However, it remains largely unknown how these changes will affect soil nitrogen (N)-cycling microbes and the emissions of potent greenhouse gas nitrous oxide (N2 O). Utilizing a field precipitation manipulation in a semi-arid grassland on the Loess Plateau, we examined how precipitation reduction (ca. -30%) influenced soil N2 O and carbon dioxide (CO2 ) emissions in field, and in a complementary lab-incubation with simulated drying-rewetting cycles. Results obtained showed that precipitation reduction stimulated plant root turnover and N-cycling processes, enhancing soil N2 O and CO2 emissions in field, particularly after each rainfall event. Also, high-resolution isotopic analyses revealed that field soil N2 O emissions primarily originated from nitrification process. The incubation experiment further showed that in field soils under precipitation reduction, drying-rewetting stimulated N mineralization and ammonia-oxidizing bacteria in favor of genera Nitrosospira and Nitrosovibrio, increasing nitrification and N2 O emissions. These findings suggest that moderate precipitation reduction, accompanied with changes in drying-rewetting cycles under future precipitation scenarios, may enhance N cycling processes and soil N2 O emissions in semi-arid ecosystems, feeding positively back to the ongoing climate change.
Collapse
Affiliation(s)
- Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunfeng Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuhong Wang
- Ningxia Yunwu Mountains Grassland Natural Reserve Administration, Guyuan, 756000, China
| | - Jun Deng
- Ningxia Yunwu Mountains Grassland Natural Reserve Administration, Guyuan, 756000, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tongshuo Bai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tangqing He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yi Wang
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, 27695, USA
| |
Collapse
|
5
|
Guo L, Lin W, Cao C, Li C. Integrated rice-crayfish farming system does not mitigate the global warming potential during rice season. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161520. [PMID: 36646218 DOI: 10.1016/j.scitotenv.2023.161520] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Integrated rice-crayfish farming system (RCS) has become increasingly popular in China. However, previous research has largely ignored the effect of trench around the paddy field on GHG emissions, which may cause inaccurate estimation of the global warming potential (GWP) from the system. This study compared the GWP between rice monoculture (RM) and RCS. The results indicated that the field of RCS had significantly lower CH4 emissions compared with RM due to lower mcrA abundance and higher pmoA abundance, while there was no difference in N2O emissions. In addition, the trench resulted in remarkably more CH4 emissions due to higher mcrA abundance and lower pmoA abundance and less N2O emissions than the field in RCS. In general, RCS seems not to mitigate GWP compared with RM due to more CH4 emissions from the trench in the current mode. Furthermore, our results indicate that RCS can reduce GWP relative to RM only when the area ratio of the trench to the system is controlled to be lower than 13.9 %.
Collapse
Affiliation(s)
- Lijin Guo
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China; International Magnesium Institute, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 3550002, PR China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 3550002, PR China
| | - Cougui Cao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434023, PR China
| | - Chengfang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China; Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434023, PR China.
| |
Collapse
|
6
|
He T, Zhang X, Du J, Gilliam FS, Yang S, Tian M, Zhang C, Zhou Y. Arbuscular Mycorrhizal Fungi Shift Soil Bacterial Community Composition and Reduce Soil Ammonia Volatilization and Nitrous Oxide Emissions. MICROBIAL ECOLOGY 2023; 85:951-964. [PMID: 36662284 DOI: 10.1007/s00248-023-02172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish mutualistic relationships with the majority of terrestrial plants, increasing plant uptake of soil nitrogen (N) in exchange for photosynthates. And may influence soil ammonia (NH3) volatilization and nitrous oxide (N2O) emissions directly by improving plant N uptake, and/or indirectly by modifying soil bacterial community composition for the soil C availability increasing. However, the effects of AMF on soil NH3 volatilization and N2O emissions and their underlying mechanisms remain unclear. We carried out two independent experiments using contrasting methods, one with a compartmental box device (in 2016) and the other with growth pot experiment (in 2020) to examine functional relationships between AMF and soil NH3 volatilization and N2O emissions under varying N input. The presence of AMF significantly reduced soil NH3 volatilization and N2O emissions while enhancing plant biomass and plant N acquisition, and reducing soil NH4+ and NO3-, even with high N input. The presence of AMF also significantly reduced the relative abundance within the bacterial orders Sphingomonadales and Rhizobiales. Sphingomonadales correlated significantly and positively with soil NH3 volatilization in 2016 and N2O emissions, whereas Rhizobiales correlated positively with soil N2O emissions. High N input significantly increased soil NH3 volatilization and N2O emissions with increasing relative abundance of Sphingomonadales and Rhizobiales. These findings demonstrate the contribution of AMF in regulating NH3 and N2O emission by improving plant N uptake and altering soil bacterial communities. They also suggest that altering the rhizosphere microbiome might offer additional potential for restoration of N-enriched agroecosystems.
Collapse
Affiliation(s)
- Tangqing He
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuelin Zhang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiaqi Du
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Frank S Gilliam
- Department of Biology, University of West Florida, Pensacola, FL, 32514, USA
| | - Shuo Yang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Tian
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Zhou
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
7
|
Zhang X, Qiu Y, Gilliam FS, Gillespie CJ, Tu C, Reberg-Horton SC, Hu S. Arbuscular Mycorrhizae Shift Community Composition of N-Cycling Microbes and Suppress Soil N 2O Emission. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13461-13472. [PMID: 36041174 DOI: 10.1021/acs.est.2c03816] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mycorrhizae are ubiquitous symbiotic associations between arbuscular mycorrhizal fungi (AMF) and terrestrial plants, in which AMF receive photosynthates from and acquire soil nutrients for their host plants. Plant uptake of soil nitrogen (N) reduces N substrate for microbial processes that generate nitrous oxide (N2O), a potent greenhouse gas. However, the underlying microbial mechanisms remain poorly understood, particularly in agroecosystems with high reactive N inputs. We examined how plant roots and AMF affect N2O emissions, N2O-producing (nirK and nirS) and N2O-consuming (nosZ) microbes under normal and high N inputs in conventional (CONV) and organically managed (OM) soils. Here, we show that high N input increased soil N2O emissions and the ratio of nirK to nirS microbes. Roots and AMF did not affect the (nirK + nirS)/nosZ ratio but significantly reduced N2O emissions and the nirK/nirS ratio. They reduced the nirK/nirS ratio by reducing nirK-Rhodobacterales but increasing nirS-Rhodocyclales in the CONV soil while decreasing nirK-Burkholderiales but increasing nirS-Rhizobiales in the OM soil. Our results indicate that plant roots and AMF reduced N2O emission directly by reducing soil N and indirectly through shifting the community composition of N2O-producing microbes in N-enriched agroecosystems, suggesting that harnessing the rhizosphere microbiome through agricultural management might offer additional potential for N2O emission mitigation.
Collapse
Affiliation(s)
- Xuelin Zhang
- College of Agronomy, Henan Agricultural University, State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Frank S Gilliam
- Department of Biology, University of West Florida, Pensacola, Florida 32514, United States
| | - Christopher J Gillespie
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Cong Tu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - S Chris Reberg-Horton
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, United States
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Qian H, Zhang N, Chen J, Chen C, Hungate BA, Ruan J, Huang S, Cheng K, Song Z, Hou P, Zhang B, Zhang J, Wang Z, Zhang X, Li G, Liu Z, Wang S, Zhou G, Zhang W, Ding Y, van Groenigen KJ, Jiang Y. Unexpected Parabolic Temperature Dependency of CH 4 Emissions from Rice Paddies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4871-4881. [PMID: 35369697 DOI: 10.1021/acs.est.2c00738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Global warming is expected to affect methane (CH4) emissions from rice paddies, one of the largest human-induced sources of this potent greenhouse gas. However, the large variability in warming impacts on CH4 emissions makes it difficult to extrapolate the experimental results over large regions. Here, we show, through meta-analysis and multi-site warming experiments using the free air temperature increase facility, that warming stimulates CH4 emissions most strongly at background air temperatures during the flooded stage of ∼26 °C, with smaller responses of CH4 emissions to warming at lower and higher temperatures. This pattern can be explained by divergent warming responses of plant growth, methanogens, and methanotrophs. The effects of warming on rice biomass decreased with the background air temperature. Warming increased the abundance of methanogens more strongly at the medium air temperature site than the low and high air temperature sites. In contrast, the effects of warming on the abundance of methanotrophs were similar across the three temperature sites. We estimate that 1 °C warming will increase CH4 emissions from paddies in China by 12.6%─substantially higher than the estimates obtained from leading ecosystem models. Our findings challenge model assumptions and suggest that the estimates of future paddy CH4 emissions need to consider both plant and microbial responses to warming.
Collapse
Affiliation(s)
- Haoyu Qian
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Junjie Chen
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Changqing Chen
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011, United States
| | - Junmei Ruan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shan Huang
- Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenwei Song
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pengfu Hou
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jun Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Wang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Xiuying Zhang
- International Institute for Earth System Science, Nanjing University, Nanjing 210023, China
| | - Ganghua Li
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenghui Liu
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Songhan Wang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiyao Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China
| | - Weijian Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanfeng Ding
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Kees Jan van Groenigen
- Department of Geography, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, U.K
| | - Yu Jiang
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Li Y, Ma J, Yu Y, Li Y, Shen X, Huo S, Xia X. Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152737. [PMID: 34998753 DOI: 10.1016/j.scitotenv.2021.152737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Soil microbial richness, diversity, and functional gene abundance are crucial factors affecting belowground ecosystem functions; however, there is still a lack of systematic understanding of their responses to global change. Here, we conducted a worldwide meta-analysis using 1071 observation data concerning the effects of global change factors (GCFs), including warming (W), increased precipitation (PPT+), decreased precipitation (PPT-), elevated CO2 concentration (eCO2), and nitrogen deposition (N), to evaluate their individual, combined, and interactive effects on soil microbial properties across different groups and ecosystems. Across the dataset, eCO2 increased microbial richness and diversity by 40.5% and 4.6%, respectively; warming and N addition decreased the abundance of denitrification functional genes (nirS, nirK, and nozS); N addition had a greater impact on soil C-cycling functional genes than on N-cycling ones. Long-term precipitation change was conducive to the increase in soil microbial richness, and fungal richness change was more sensitive than bacterial richness, but the sensitivity of bacteria richness to N addition was positively correlated with experimental duration. Soil microbial richness, diversity, and functional gene abundances could be significantly affected by individual or multiple GCF changes, and their interactions are mainly additive. W×eCO2 on microbial diversity, and N×PPT+ and W×N on N-cycling functional gene abundance showed synergistic interactions. Based on the limitations of the collected data and the findings, we suggest designing experiments with multiple GCFs and long experimental durations and incorporating the effects and interactions of multiple drivers into ecosystem models to accurately predict future soil microbial properties and functions under future global changes.
Collapse
Affiliation(s)
- Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Yi Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| |
Collapse
|
10
|
Zhang Y, Zhang F, Abalos D, Luo Y, Hui D, Hungate BA, García-Palacios P, Kuzyakov Y, Olesen JE, Jørgensen U, Chen J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N 2 O emission. GLOBAL CHANGE BIOLOGY 2022. [PMID: 34923712 DOI: 10.6084/m9.figshare.14370896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.
Collapse
Affiliation(s)
- Yong Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Feng Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Diego Abalos
- Department of Agroecology, Aarhus University, Tjele, Denmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, Tennessee, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Pablo García-Palacios
- Departamento de Biología y Geología, Física y Química Inorgánica y Analítica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
- Agro-Technological Institute, RUDN University, Moscow, Russia
- Institute of Environmental Sciences, Kazan Federal University, Kazan, Russia
| | - Jørgen Eivind Olesen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Uffe Jørgensen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Denmark
- iCLIMATE Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
- Aarhus University Centre for Circular Bioeconomy, Aarhus University, Tjele, Denmark
| |
Collapse
|
11
|
Zhang Y, Zhang F, Abalos D, Luo Y, Hui D, Hungate BA, García‐Palacios P, Kuzyakov Y, Olesen JE, Jørgensen U, Chen J. Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N 2 O emission. GLOBAL CHANGE BIOLOGY 2022; 28:2158-2168. [PMID: 34923712 PMCID: PMC9303726 DOI: 10.1111/gcb.16042] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/10/2021] [Indexed: 05/15/2023]
Abstract
Unprecedented nitrogen (N) inputs into terrestrial ecosystems have profoundly altered soil N cycling. Ammonia oxidizers and denitrifiers are the main producers of nitrous oxide (N2 O), but it remains unclear how ammonia oxidizer and denitrifier abundances will respond to N loading and whether their responses can predict N-induced changes in soil N2 O emission. By synthesizing 101 field studies worldwide, we showed that N loading significantly increased ammonia oxidizer abundance by 107% and denitrifier abundance by 45%. The increases in both ammonia oxidizer and denitrifier abundances were primarily explained by N loading form, and more specifically, organic N loading had stronger effects on their abundances than mineral N loading. Nitrogen loading increased soil N2 O emission by 261%, whereas there was no clear relationship between changes in soil N2 O emission and shifts in ammonia oxidizer and denitrifier abundances. Our field-based results challenge the laboratory-based hypothesis that increased ammonia oxidizer and denitrifier abundances by N loading would directly cause higher soil N2 O emission. Instead, key abiotic factors (mean annual precipitation, soil pH, soil C:N ratio, and ecosystem type) explained N-induced changes in soil N2 O emission. Altogether, these findings highlight the need for considering the roles of key abiotic factors in regulating soil N transformations under N loading to better understand the microbially mediated soil N2 O emission.
Collapse
Affiliation(s)
- Yong Zhang
- School of Resources and Environmental EngineeringAnhui UniversityHefeiChina
| | - Feng Zhang
- School of Resources and Environmental EngineeringAnhui UniversityHefeiChina
| | - Diego Abalos
- Department of AgroecologyAarhus UniversityTjeleDenmark
| | - Yiqi Luo
- Center for Ecosystem Science and Society and Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Dafeng Hui
- Department of Biological SciencesTennessee State UniversityNashvilleTennesseeUSA
| | - Bruce A. Hungate
- Center for Ecosystem Science and Society and Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Pablo García‐Palacios
- Departamento de Biología y GeologíaFísica y Química Inorgánica y AnalíticaEscuela Superior de Ciencias Experimentales y TecnologíaUniversidad Rey Juan CarlosMóstolesSpain
- Instituto de Ciencias AgrariasConsejo Superior de Investigaciones CientíficasMadridSpain
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate EcosystemsUniversity of GöttingenGöttingenGermany
- Agro‐Technological InstituteRUDN UniversityMoscowRussia
- Institute of Environmental SciencesKazan Federal UniversityKazanRussia
| | - Jørgen Eivind Olesen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- iCLIMATE Interdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| | - Uffe Jørgensen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| | - Ji Chen
- Department of AgroecologyAarhus UniversityTjeleDenmark
- iCLIMATE Interdisciplinary Centre for Climate ChangeAarhus UniversityRoskildeDenmark
- Aarhus University Centre for Circular BioeconomyAarhus UniversityTjeleDenmark
| |
Collapse
|
12
|
Qiu Q, Bender SF, Mgelwa AS, Hu Y. Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150857. [PMID: 34626638 DOI: 10.1016/j.scitotenv.2021.150857] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/03/2021] [Accepted: 10/03/2021] [Indexed: 05/25/2023]
Abstract
Nutrient loss from terrestrial ecosystems via leaching and gaseous emissions is increasingly threatening global environmental and human health. Although arbuscular mycorrhizal fungi (AMF) have been shown to regulate soil N and P losses, a comprehensive quantitative overview of their influences on the losses of these soil nutrients across global scales is currently lacking. This study used a meta-analysis of 322 observations from 36 studies to assess the effect of AMF inoculum on 11 variables related to the loss of soil N and P. We found that the presence of AMF significantly reduced soil N and P losses, with the most pronounced reduction occurring in soil NO3--N (-32%), followed by total P (-21%), available P (-16%) and N2O (-10%). However, the mitigation effects of AMF on soil N and P loss were dependent on the identity of AMF inoculum, plant type and soil biotic and abiotic factors. Generally, the mitigation effects of AMF increased with increasing AMF root colonization rate, microbial diversity of inoculants, soil organic carbon (SOC) content and experimental duration as well as with decreasing soil sand contents and soil N and P availability. Overall, this meta-analysis highlights the importance of AMF inoculation in mitigating N and P nutrient loss and environmental pollution for terrestrial ecosystem sustainability.
Collapse
Affiliation(s)
- Qingyan Qiu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - S Franz Bender
- Plant-Soil-Interactions, Agroscope, Reckenholzstrasse 191, CH-8046 Zürich, Switzerland; University of Zürich, Department of Plant and Microbial Biology, Zollikerstrasse 107, CH-8008 Zürich, Switzerland
| | - Abubakari Said Mgelwa
- College of Natural Resources Management & Tourism, Mwalimu Julius K. Nyerere University of Agriculture & Technology, P.O. Box 976, Musoma, Tanzania; CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yalin Hu
- Forest Ecology & Stable Isotope Center, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
Xu X, Qiu Y, Zhang K, Yang F, Chen M, Luo X, Yan X, Wang P, Zhang Y, Chen H, Guo H, Jiang L, Hu S. Climate warming promotes deterministic assembly of arbuscular mycorrhizal fungal communities. GLOBAL CHANGE BIOLOGY 2022; 28:1147-1161. [PMID: 34668627 DOI: 10.1111/gcb.15945] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) significantly contribute to plant resource acquisition and play important roles in mediating plant interactions and soil carbon (C) dynamics. However, it remains unclear how AMF communities respond to climate change. We assessed impacts of warming and precipitation alterations (30% increase or decrease) on soil AMF communities, and examined major ecological processes shaping the AMF community assemblage in a Tibetan alpine meadow. Our results showed that warming significantly increased root biomass, and available nitrogen (N) and phosphorus (P) in soil. While precipitation alterations increased AMF abundances, they did not significantly affect the composition or diversity of AMF communities. In contrast, warming altered the composition of AMF communities and reduced their Shannon-Wiener index and Pielou's evenness. In particular, warming shifted the AMF community composition in favor of Diversisporaceae over Glomeraceae, likely through its impact on soil N and P availability. In addition, AMF communities were phylogenetically random in the unwarmed control but clustered in warming plots, implying more deterministic community assembly under climate warming. Warming enhancement of root growth, N and P availability likely reduced plant C-allocation to AMF, imposing stronger environmental filtering on AMF communities. We further proposed a conceptual framework that integrates biological and geochemical processes into a mechanistic understanding of warming and precipitation changes' effects on AMF. Taken together, these results suggest that soil AMF communities may be more sensitive to warming than expected, highlighting the need to monitor their community structure and associated functional consequences on plant communities and soil C dynamics under the future warmer climate.
Collapse
Affiliation(s)
- Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fei Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xi Luo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuebin Yan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Huaihai Chen
- School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Hui Guo
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Shuijin Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
14
|
Fungi Dominated the Incorporation of 13C-CO 2 into Microbial Biomass in Tomato Rhizosphere Soil under Different CO 2 Concentrations. Microorganisms 2021; 9:microorganisms9102121. [PMID: 34683442 PMCID: PMC8537487 DOI: 10.3390/microorganisms9102121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 11/24/2022] Open
Abstract
An elevated CO2 (eCO2) fumigation experiment was carried out to study the influence of various CO2 concentrations on microorganisms involved in the incorporation of root-derived C in greenhouse soil systems. In this study, 400 and 800 µmol·mol−1 CO2 fumigation treatments were conducted during tomato planting. Phospholipid fatty acid (PLFA) profiling based on the stable isotope probing (SIP) technique was applied to trace active microorganisms. The absolute total abundance of 13C-PLFAs was much higher under eCO2 treatment. Most of the 13C-CO2 was incorporated into the 13C-PLFAs 18:2ω6,9 (fungi), 16:0 (general PLFA), 18:1ω9c (Gram-negative bacteria, G−) and i17:0 (Gram-positive bacteria, G+) via rhizodeposition from tomato under ambient CO2 (aCO2) and eCO2 treatments, suggesting similar responses of active microorganisms to different CO2 treatments. However, the fungi (characterized by the 13C-PLFA 18:2ω6,9) played a much more dominant role in the incorporation of root-derived C under eCO2. Actinomycetes, marked by the 13C-PLFA 10-Me-18:0, occurred only on labeling day 15 under the eCO2 treatment, indicating that the actinomycetes fed on both soil organic carbon and fresh rhizodeposition. It was indicated that eCO2 significantly affected microbial biomass and microbial community structures involved in the incorporation of 13C-CO2 via tomato root secretions, as supported by Adonis analysis and the Mantel test.
Collapse
|
15
|
Martins CSC, Nazaries L, Delgado‐Baquerizo M, Macdonald CA, Anderson IC, Singh BK. Rainfall frequency and soil water availability regulate soil methane and nitrous oxide fluxes from a native forest exposed to elevated carbon dioxide. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Loïc Nazaries
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
| | - Manuel Delgado‐Baquerizo
- Departamento de Sistemas Físicos Químicos y Naturales Universidad Pablo de Olavide Sevilla Spain
| | - Catriona A. Macdonald
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
| | - Ian C. Anderson
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the EnvironmentWestern Sydney University Penrith NSW Australia
- Global Centre for Land‐Based Innovation Western Sydney University Penrith NSW Australia
| |
Collapse
|
16
|
Qiu Y, Guo L, Xu X, Zhang L, Zhang K, Chen M, Zhao Y, Burkey KO, Shew HD, Zobel RW, Zhang Y, Hu S. Warming and elevated ozone induce tradeoffs between fine roots and mycorrhizal fungi and stimulate organic carbon decomposition. SCIENCE ADVANCES 2021; 7:7/28/eabe9256. [PMID: 34244138 PMCID: PMC8270489 DOI: 10.1126/sciadv.abe9256] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 05/27/2021] [Indexed: 05/19/2023]
Abstract
Climate warming and elevated ozone (eO3) are important climate change components that can affect plant growth and plant-microbe interactions. However, the resulting impact on soil carbon (C) dynamics, as well as the underlying mechanisms, remains unclear. Here, we show that warming, eO3, and their combination induce tradeoffs between roots and their symbiotic arbuscular mycorrhizal fungi (AMF) and stimulate organic C decomposition in a nontilled soybean agroecosystem. While warming and eO3 reduced root biomass, tissue density, and AMF colonization, they increased specific root length and promoted decomposition of both native and newly added organic C. Also, they shifted AMF community composition in favor of the genus Paraglomus with high nutrient-absorbing hyphal surface over the genus Glomus prone to protection of soil organic C. Our findings provide deep insights into plant-microbial interactive responses to warming and eO3 and how these responses may modulate soil organic C dynamics under future climate change scenarios.
Collapse
Affiliation(s)
- Yunpeng Qiu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lijin Guo
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan 570228, China
| | - Xinyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangcheng Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengfei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yexin Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kent O Burkey
- Plant Sciences Research Unit, USDA-ARS, Raleigh, NC 27607, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - H David Shew
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Richard W Zobel
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Yi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuijin Hu
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|