1
|
Messier KP, Reif DM, Marvel SW. The GeoTox Package: Open-source software for connecting spatiotemporal exposure to individual and population-level risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24314096. [PMID: 39399012 PMCID: PMC11469396 DOI: 10.1101/2024.09.23.24314096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Comprehensive environmental risk characterization, encompassing physical, chemical, social, ecological, and lifestyle stressors, necessitates innovative approaches to handle the escalating complexity. This is especially true when considering individual and population-level diversity, where the myriad combinations of real-world exposures magnify the combinatoric challenges. The GeoTox framework offers a tractable solution by integrating geospatial exposure data from source-to-outcome in a series of modular, interconnected steps. Results Here, we introduce the GeoTox open-source R software package for characterizing the risk of perturbing molecular targets involved in adverse human health outcomes based on exposure to spatially-referenced stressor mixtures. We demonstrate its usage in building computational workflows that incorporate individual and population-level diversity. Our results demonstrate the applicability of GeoTox for individual and population-level risk assessment, highlighting its capacity to capture the complex interplay of environmental stressors on human health. Conclusions The GeoTox package represents a significant advancement in environmental risk characterization, providing modular software to facilitate the application and further development of the GeoTox framework for quantifying the relationship between environmental exposures and health outcomes. By integrating geospatial methods with cutting-edge exposure and toxicological frameworks, GeoTox offers a robust tool for assessing individual and population-level risks from environmental stressors. GeoTox is freely available at https://niehs.github.io/GeoTox/.
Collapse
Affiliation(s)
- Kyle P Messier
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 530 Davis Dr, Durham, 27713, NC, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr, Research Triangle Park, 27709, NC, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 530 Davis Dr, Durham, 27713, NC, USA
| | - Skylar W Marvel
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, 530 Davis Dr, Durham, 27713, NC, USA
| |
Collapse
|
2
|
Wan C, Ma H, Liu J, Liu F, Liu J, Dong G, Zeng X, Li D, Yu Z, Wang X, Li J, Zhang G. Quantitative relationships of FAM50B and PTCHD3 methylation with reduced intelligence quotients in school aged children exposed to lead: Evidence from epidemiological and in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167976. [PMID: 37866607 DOI: 10.1016/j.scitotenv.2023.167976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
At present, the application of DNA methylation (DNAm) biomarkers in environmental health risk assessment (EHRA) is more challenging due to the unclearly quantitative relationship between them. We aimed to explore the role of FAM50B and PTCHD3 at the level of signaling pathways, and establish the quantitative relationship between them and children's intelligence quotients (IQs). DNAm of target regions was measured in multiple cell models and was compared with the human population data. Then the dose-response relationships of lead exposure with neurotoxicity and DNAm were established by benchmark dose (BMD) model, followed by potential signaling pathway screening. Results showed that there was a quantitative linear relationship between children's IQs and FAM50B/PTCHD3 DNAm (DNAm between 51.40 % - 78.78 % and 31.41 % - 74.19 % for FAM50B and PTCHD3, respectively), and this relationship was more significant when children's IQs > 90. The receiver operating characteristic (ROC) and calibration curves showed that FAM50B/PTCHD3 DNAm had a satisfying accuracy and consistency in predicting children's IQs, which was confirmed by sensitivity analysis of gender and CpG site grouping data. In cell experiments, there was also a quantitative linear relationship between FAM50B DNAm and reactive oxygen species (ROS) production, which was mediated by PI3K-AKT signaling pathway. In addition, the lead BMD of ROS was close to that of FAM50B DNAm, suggesting that FAM50B DNAm was a suitable biomarker for the risk assessments of adverse outcomes induced by lead. Taken collectively, these results suggest that FAM50B/PTCHD3 can be applied to EHRA and the prevention/intervention of adverse effects of lead on children's IQs.
Collapse
Affiliation(s)
- Cong Wan
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| | - Jiahong Liu
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Liu
- School of Business Administration, South China University of Technology, Guangzhou 510641, China
| | - Jing Liu
- Guangzhou First People's Hospital, Guangzhou 510180, China
| | - Guanghui Dong
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaowen Zeng
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Province Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
3
|
Yan M, Zhu H, Luo H, Zhang T, Sun H, Kannan K. Daily Exposure to Environmental Volatile Organic Compounds Triggers Oxidative Damage: Evidence from a Large-Scale Survey in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20501-20509. [PMID: 38033144 DOI: 10.1021/acs.est.3c06055] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Volatile organic compounds (VOCs) are ubiquitous environmental pollutants and have been implicated in adverse health outcomes. In this study, concentrations of 11 VOC metabolites (mVOCs) and three oxidative stress biomarkers (8-oxo-7,8-dihydro-2'-deoxyguanosine, 8-oxo-7,8-dihydro-guanosine, and dityrosine) were determined in 205 urine samples collected from 12 cities across mainland China. Urinary ∑11mVOC concentrations ranged from 498 to 1660 ng/mL, with a geometric mean (GM) value of 1070 ng/mL. The factorial analysis revealed that cooking, solvents, and vehicle emissions were the three primary sources of VOC exposure. A significant regional variation was clearly found in ∑11mVOC concentrations across four regions in China, with high urine VOC concentrations found in North and South China (GM: 1450 and 1340 ng/mL). The multiple linear regression model revealed that most mVOCs were significantly positively correlated with three oxidative stress markers (β range: 0.06-0.22). Mixture effect regression showed that isoprene, crotonaldehyde, acrolein, and benzene were the strongest contributors to oxidative stress. Approximately 80% of the participants have HQ values greater than 1.0 for 1,3-butadiene and benzene, suggesting that their exposure doses were close to potential adverse health effects. Our findings provide comprehensive information on human exposure and potential health risks of VOCs in China.
Collapse
Affiliation(s)
- Mengqi Yan
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkai Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Haining Luo
- Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin 300100, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, United States
| |
Collapse
|
4
|
Eccles KM, Karmaus AL, Kleinstreuer NC, Parham F, Rider CV, Wambaugh JF, Messier KP. A geospatial modeling approach to quantifying the risk of exposure to environmental chemical mixtures via a common molecular target. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158905. [PMID: 36152849 PMCID: PMC9979101 DOI: 10.1016/j.scitotenv.2022.158905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 05/14/2023]
Abstract
In the real world, individuals are exposed to chemicals from sources that vary over space and time. However, traditional risk assessments based on in vivo animal studies typically use a chemical-by-chemical approach and apical disease endpoints. New approach methodologies (NAMs) in toxicology, such as in vitro high-throughput (HTS) assays generated in Tox21 and ToxCast, can more readily provide mechanistic chemical hazard information for chemicals with no existing data than in vivo methods. In this paper, we establish a workflow to assess the joint action of 41 modeled ambient chemical exposures in the air from the USA-wide National Air Toxics Assessment by integrating human exposures with hazard data from curated HTS (cHTS) assays to identify counties where exposure to the local chemical mixture may perturb a common biological target. We exemplify this proof-of-concept using CYP1A1 mRNA up-regulation. We first estimate internal exposure and then convert the inhaled concentration to a steady state plasma concentration using physiologically based toxicokinetic modeling parameterized with county-specific information on ages and body weights. We then use the estimated blood plasma concentration and the concentration-response curve from the in vitro cHTS assay to determine the chemical-specific effects of the mixture components. Three mixture modeling methods were used to estimate the joint effect from exposure to the chemical mixture on the activity levels, which were geospatially mapped. Finally, a Monte Carlo uncertainty analysis was performed to quantify the influence of each parameter on the combined effects. This workflow demonstrates how NAMs can be used to predict early-stage biological perturbations that can lead to adverse health outcomes that result from exposure to chemical mixtures. As a result, this work will advance mixture risk assessment and other early events in the effects of chemicals.
Collapse
Affiliation(s)
- Kristin M Eccles
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Agnes L Karmaus
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, NC, USA
| | - Nicole C Kleinstreuer
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Fred Parham
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - Cynthia V Rider
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA
| | - John F Wambaugh
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Durham, USA
| | - Kyle P Messier
- National Institute of Environmental Health Science, Division of the Translational Toxicology, Durham, USA.
| |
Collapse
|
5
|
Lee KM, Corley R, Jarabek AM, Kleinstreuer N, Paini A, Stucki AO, Bell S. Advancing New Approach Methodologies (NAMs) for Tobacco Harm Reduction: Synopsis from the 2021 CORESTA SSPT-NAMs Symposium. TOXICS 2022; 10:760. [PMID: 36548593 PMCID: PMC9781465 DOI: 10.3390/toxics10120760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
New approach methodologies (NAMs) are emerging chemical safety assessment tools consisting of in vitro and in silico (computational) methodologies intended to reduce, refine, or replace (3R) various in vivo animal testing methods traditionally used for risk assessment. Significant progress has been made toward the adoption of NAMs for human health and environmental toxicity assessment. However, additional efforts are needed to expand their development and their use in regulatory decision making. A virtual symposium was held during the 2021 Cooperation Centre for Scientific Research Relative to Tobacco (CORESTA) Smoke Science and Product Technology (SSPT) conference (titled "Advancing New Alternative Methods for Tobacco Harm Reduction"), with the goals of introducing the concepts and potential application of NAMs in the evaluation of potentially reduced-risk (PRR) tobacco products. At the symposium, experts from regulatory agencies, research organizations, and NGOs shared insights on the status of available tools, strengths, limitations, and opportunities in the application of NAMs using case examples from safety assessments of chemicals and tobacco products. Following seven presentations providing background and application of NAMs, a discussion was held where the presenters and audience discussed the outlook for extending the NAMs toxicological applications for tobacco products. The symposium, endorsed by the CORESTA In Vitro Tox Subgroup, Biomarker Subgroup, and NextG Tox Task Force, illustrated common ground and interest in science-based engagement across the scientific community and stakeholders in support of tobacco regulatory science. Highlights of the symposium are summarized in this paper.
Collapse
Affiliation(s)
| | - Richard Corley
- Greek Creek Toxicokinetics Consulting, LLC, Boise, ID 83714, USA
| | - Annie M. Jarabek
- Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, USA
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for Evaluation of Alternative Toxicological Methods (NICEATM), Research Triangle Park, NC 27711, USA
| | - Alicia Paini
- European Commission Joint Research Center (EC JRC), 2749 Ispra, Italy
| | - Andreas O. Stucki
- PETA Science Consortium International e.V., 70499 Stuttgart, Germany
| | - Shannon Bell
- Inotiv-RTP, Research Triangle Park, NC 27709, USA
| |
Collapse
|
6
|
Peng G, Lin Y, van Bavel B, Li D, Ni J, Song Y. Aggregate exposure pathways for microplastics (mpAEP): An evidence-based framework to identify research and regulatory needs. WATER RESEARCH 2022; 209:117873. [PMID: 34839066 DOI: 10.1016/j.watres.2021.117873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Microplastics as emerging contaminants have been detected from peaks to poles. High concerns on the risks of microplastic pollution to humans and ecosystems have therefore been raised in the past decade. While a large number of studies have been conducted to investigate the environmental levels and toxicity of microplastics, the information generated to support risk assessment is fragmented and the coherence between different types of study is largely lacking. Here we introduced the Aggregate Exposure Pathway (AEP), a conceptual framework originally proposed for chemical exposure assessment, to facilitate organization, visualization and evaluation of existing information generated from microplastic research, and to efficiently identify future knowledge and regulatory needs. A putative microplastic AEP network (mpAEP) was developed to demonstrate the concept and model development strategies. Two mpAEP case studies, with polyethylene (PE) as a prototype, were then presented based on existing environmental exposure data collected from the Changjiang Estuary and the East China Sea (Case I), and the Oslo Fjord (Case II), respectively. Weight of evidence (WoE) assessment of the mpAEPs were performed for evaluating the essentiality, theoretical plausibility, empirical evidence and quantitative understanding of the evidence and relationships in the AEPs. Both cases showed moderate/high WoE to support the strength of the models, whereas also displayed clear knowledge gaps, thus providing guidance for future investigations and regulations. The mpAEP framework introduced herein presents a novel strategy for organizing fragmented information from diverse types of microplastic research, enhancing mechanistic understanding of causal relationships and facilitating the development of quantitative prediction models for research and regulation in the future.
Collapse
Affiliation(s)
- Guyu Peng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Yan Lin
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo N-0579, Norway
| | - Bert van Bavel
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo N-0579, Norway
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, PR China
| | - Jinren Ni
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China.
| | - You Song
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo N-0579, Norway.
| |
Collapse
|
7
|
Price PS, Jarabek AM, Burgoon LD. Organizing mechanism-related information on chemical interactions using a framework based on the aggregate exposure and adverse outcome pathways. ENVIRONMENT INTERNATIONAL 2020; 138:105673. [PMID: 32217427 PMCID: PMC8268396 DOI: 10.1016/j.envint.2020.105673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
This paper presents a framework for organizing and accessing mechanistic data on chemical interactions. The framework is designed to support the assessment of risks from combined chemical exposures. The framework covers interactions between chemicals that occur over the entire source-to-outcome continuum including interactions that are studied in the fields of chemical transport, environmental fate, exposure assessment, dosimetry, and individual and population-based adverse outcomes. The framework proposes to organize data using a semantic triple of a chemical (subject), has impact (predicate), and a causal event on the source-to-outcome continuum of a second chemical (object). The location of the causal event on the source-to-outcome continuum and the nature of the impact are used as the basis for a taxonomy of interactions. The approach also builds on concepts from the Aggregate Exposure Pathway (AEP) and Adverse Outcome Pathway (AOP). The framework proposes the linking of AEPs of multiple chemicals and the AOP networks relevant to those chemicals to form AEP-AOP networks that describe chemical interactions that cannot be characterized using AOP networks alone. Such AEP-AOP networks will aid the construction of workflows for both experimental design and the systematic review or evaluation performed in risk assessments. Finally, the framework is used to link the constructs of existing component-based approaches for mixture toxicology to specific categories in the interaction taxonomy.
Collapse
Affiliation(s)
- Paul S Price
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States.
| | - Annie M Jarabek
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Lyle D Burgoon
- Environmental Laboratory, US Army Engineer Research and Development Center, Research Triangle Park, NC, United States
| |
Collapse
|
8
|
Mechanistic integration of exposure and effects: advances to apply systems toxicology in support of regulatory decision-making. CURRENT OPINION IN TOXICOLOGY 2019. [DOI: 10.1016/j.cotox.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|