1
|
Ren K, Ming H, Liu S, Lang X, Jin Y, Fan J. Full-length 16S rRNA gene sequencing reveals the operating mode and chlorination-aggravated SWRO biofouling at a nuclear power plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1-17. [PMID: 39007303 DOI: 10.2166/wst.2024.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024]
Abstract
Reverse osmosis (RO) membrane fouling and biological contamination problems faced by seawater desalination systems are microbiologically related. We used full-length 16S rRNA gene sequencing to assess the bacterial community structure and chlorine-resistant bacteria (CRB) associated with biofilm growth in different treatment processes under the winter mode of a chlorinated seawater desalination system in China. At the outset of the winter mode, certain CRB, such as Acinetobacter, Pseudomonas, and Bacillus held sway over the bacterial community structure, playing a pivotal role in biofouling. At the mode's end, Deinococcus and Paracoccus predominated, with Pseudomonas and Roseovarius following suit, while certain CRB genera still maintained their dominance. RO and chlorination are pivotal factors in shaping the bacterial community structure and diversity, and increases in total heterotrophic bacterial counts and community diversity in safety filters may adversely affect the effectiveness of subsequent RO systems. Besides, the bacterial diversity and culturable biomass in the water produced by the RO system remain high, and some conditionally pathogenic CRBs pose a certain microbial risk as a source of drinking water. Targeted removal of these CRBs will be an important area of research for advancing control over membrane clogging and ensuring water quality safety in the future.
Collapse
Affiliation(s)
- Kaijia Ren
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Hongxia Ming
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; These authors contributed equally to this work
| | - Siyu Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Xianlong Lang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China; College of Marine Technology and Environment, Dalian Ocean University, Dalian 116021, China
| | - Yuan Jin
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China
| | - Jingfeng Fan
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116021, China E-mail:
| |
Collapse
|
2
|
Ishikawa M, Nakatani H, Hori K. Growth phase-dependent production of the adhesive nanofiber protein AtaA in Acinetobacter sp. Tol 5. J Biosci Bioeng 2023; 135:224-231. [PMID: 36653269 DOI: 10.1016/j.jbiosc.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/24/2022] [Indexed: 01/18/2023]
Abstract
AtaA, the sticky, long, and peritrichate nanofiber protein from Acinetobacter sp. Tol 5, mediates autoagglutination and is highly adhesive to various material surfaces, resulting in a biofilm. Although the production of the adhesive nanofiber protein is likely to require a large amount of energy and material sources, the relationship between AtaA fiber production and cell growth remains unknown. Here, we report the growth phase-dependent AtaA fiber production in Tol 5. We examined the ataA gene expression in different growth phases using a reporter gene assay with an originally developed reporter plasmid and using reverse transcription-quantitative polymerase chain reaction. Bacterial cells with surface-displayed AtaA at different growth phases were immunostained and analyzed using fluorescence flow cytometry and confocal laser scanning microscopy. The results indicate that Tol 5 modulated the amount of surface-displayed AtaA at the transcriptional level. AtaA production was low in the early growth phase but remarkably increased in the late growth phase, covering the whole bacterial cell with AtaA fibers in the stationary phase. Tol 5 displayed AtaA fibers poorly in the early growth phase and showed less autoagglutination and adhesiveness than those in the stationary phase. Although Tol 5 grew as fast as its ataA-deficient mutant in the early growth phase, the optical density of Tol 5 culture was slightly lower than that of the ataA-deficient mutant in the late growth phase. Based on these experimental results, we propose the growth-phase-dependent production of AtaA fiber for efficient and fast cell growth.
Collapse
Affiliation(s)
- Masahito Ishikawa
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, 1266 Tamura-cho, Nagahama, Shiga 526-0829, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Hajime Nakatani
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
3
|
Yoshimoto S, Aoki S, Ohara Y, Ishikawa M, Suzuki A, Linke D, Lupas AN, Hori K. Identification of the adhesive domain of AtaA from Acinetobacter sp. Tol 5 and its application in immobilizing Escherichia coli. Front Bioeng Biotechnol 2023; 10:1095057. [PMID: 36698637 PMCID: PMC9868564 DOI: 10.3389/fbioe.2022.1095057] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Cell immobilization is an important technique for efficiently utilizing whole-cell biocatalysts. We previously invented a method for bacterial cell immobilization using AtaA, a trimeric autotransporter adhesin from the highly sticky bacterium Acinetobacter sp. Tol 5. However, except for Acinetobacter species, only one bacterium has been successfully immobilized using AtaA. This is probably because the heterologous expression of large AtaA (1 MDa), that is a homotrimer of polypeptide chains composed of 3,630 amino acids, is difficult. In this study, we identified the adhesive domain of AtaA and constructed a miniaturized AtaA (mini-AtaA) to improve the heterologous expression of ataA. In-frame deletion mutants were used to perform functional mapping, revealing that the N-terminal head domain is essential for the adhesive feature of AtaA. The mini-AtaA, which contains a homotrimer of polypeptide chains from 775 amino acids and lacks the unnecessary part for its adhesion, was properly expressed in E. coli, and a larger amount of molecules was displayed on the cell surface than that of full-length AtaA (FL-AtaA). The immobilization ratio of E. coli cells expressing mini-AtaA on a polyurethane foam support was significantly higher compared to the cells with or without FL-AtaA expression, respectively. The expression of mini-AtaA in E. coli had little effect on the cell growth and the activity of another enzyme reflecting the production level, and the immobilized E. coli cells could be used for repetitive enzymatic reactions as a whole-cell catalyst.
Collapse
Affiliation(s)
- Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Sota Aoki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuki Ohara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan,*Correspondence: Katsutoshi Hori,
| |
Collapse
|
4
|
Zhang G, Chen J, Li W. Conjugative antibiotic-resistant plasmids promote bacterial colonization of microplastics in water environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128443. [PMID: 35152101 DOI: 10.1016/j.jhazmat.2022.128443] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Both microplastic and bacterial antibiotic resistance have attracted attention worldwide. When microplastics coexist with antibiotic-resistant bacteria (ARB), which carry antibiotic resistance genes (ARGs), ARB colonize the surface of microplastics, and a unique biofilm is formed. The ARB and ARGs in biofilms are denser and more difficult to remove. However, studies on the factors influencing the formation of microplastic biofilms are limited. In this study, plasmid RP4, which appeared in wastewater treatment plants, was found to be able to promote irreversible bacterial colonization of microplastics, and the hypothetical reason was conjugative pili expression. Then, the potential conjugative pili synthesis promoter "nanoalumina" and inhibitor "free nitrous acid" (FNA) were selected to test this hypothesis. Simultaneously, nanoalumina promoted and FNA inhibited bacterial colonization when RP4 existed. Combined with the gene expression and ATP analysis results, this hypothesis was confirmed, and the mechanism of RP4 on bacterial colonization was related mainly to conjugative pili protein synthesis and intracellular ATP. In this study, the effects of plasmid RP4, nanoalumina, and FNA on the formation of microplastic biofilms were reported, which has a certain reference value for other researchers exploring microplastic biofilms.
Collapse
Affiliation(s)
- Guosheng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Jiping Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 200092 Shanghai, China.
| |
Collapse
|
5
|
Hori K, Yoshimoto S, Yoshino T, Zako T, Hirao G, Fujita S, Nakamura C, Yamagishi A, Kamiya N. Recent advances in research on biointerfaces: From cell surfaces to artificial interfaces. J Biosci Bioeng 2022; 133:195-207. [PMID: 34998688 DOI: 10.1016/j.jbiosc.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 12/16/2022]
Abstract
Biointerfaces are regions where biomolecules, cells, and organic materials are exposed to environmental media or come in contact with other biomaterials, cells, and inorganic/organic materials. In this review article, six research topics on biointerfaces are described to show examples of state-of-art research approaches. First, biointerface design of nanoparticles for molecular detection is described. Functionalized gold nanoparticles can be used for sensitive detection of various target molecules, including chemical compounds and biomolecules, such as DNA, proteins, cells, and viruses. Second, the interaction between bacterial cell surfaces and material surfaces, including the introduction of advances in analytical methods and theoretical calculations, are explained as well as their applications to bioprocesses. Third, bioconjugation technologies for localizing functional proteins at biointerfaces are introduced, in particular, by focusing the potential of enzymes as a catalytic tool for designing different types of bioconjugates that function at biointerfaces. Forth topics is focusing on lipid-protein interaction in cell membranes as natural biointerfaces. Examples of membrane lipid engineering are introduced, and it is mentioned how their compositional profiles affect membrane protein functions. Fifth topic is the physical method for molecular delivery across the biointerface being developed currently, such as highly efficient nanoinjection, electroporation, and nanoneedle devices, in which the key is how to perforate the cell membrane. Final topic is the chemical design of lipid- or polymer-based RNA delivery carriers and their behavior on the cell interface, which are currently attracting attention as RNA vaccine technologies targeting COVID-19. Finally, future directions of biointerface studies are presented.
Collapse
Affiliation(s)
- Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Tamotsu Zako
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Gen Hirao
- Faculty of Science, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Satoshi Fujita
- Photo BIO-OIL, National Institute of Advanced Industrial Science and Technology, Suita, Osaka 565-0871, Japan; Department of Applied Physics, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chikashi Nakamura
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ayana Yamagishi
- DAILAB, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Central 5 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
6
|
Ishii S, Yoshimoto S, Hori K. Single-cell adhesion force mapping of a highly sticky bacterium in liquid. J Colloid Interface Sci 2022; 606:628-634. [PMID: 34416455 DOI: 10.1016/j.jcis.2021.08.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/25/2021] [Accepted: 08/07/2021] [Indexed: 11/18/2022]
Abstract
The sticky bacterium Acinetobacter sp. Tol 5 adheres to various material surfaces via its cell surface nanofiber protein, AtaA. This adhesiveness has only been evaluated based on the amount of cells adhering to a surface. In this study, the adhesion force mapping of a single Tol 5 cell in liquid using the quantitative imaging mode of atomic force microscopy (AFM) revealed that the adhesion of Tol 5 was near 2 nN, which was 1-2 orders of magnitude higher than that of other adhesive bacteria. The adhesion force of a cell became stronger with the increase in AtaA molecules present on the cell surface. Many fibers of peritrichate AtaA molecules simultaneously interact with a surface, strongly attaching the cell to the surface. The adhesion force of a Tol 5 cell was drastically reduced in the presence of 1% casamino acids but not in deionized water (DW), although both liquids decrease the adhesiveness of Tol 5 cells, suggesting that DW and casamino acids inhibit the cell approaching step and the subsequent direct interaction step of AtaA with surfaces, respectively. Heterologous production of AtaA provided non-adhesive Acinetobacter baylyi ADP1 cells with a strong adhesion force to AFM tip surfaces of silicon and gold.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan.
| |
Collapse
|
7
|
Zhu Z, Shan L, Zhang X, Hu F, Zhong D, Yuan Y, Zhang J. Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. CHEMOSPHERE 2021; 264:128410. [PMID: 33002803 DOI: 10.1016/j.chemosphere.2020.128410] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Community-intrinsic properties affect the composition and function of a microbial community. Understanding the microbial community-intrinsic properties in drinking water distribution systems (DWDS) could help to select disinfection strategies and aid in the prevention of waterborne infectious diseases. In this study, we investigated the formation of multi-species biofilms in six groups, each consisting of four or five mixed bacterial strains isolated from a simulated DWDS, at different incubation times (24, 48, and 72 h). We then evaluated the chlorine resistance of the 72-h multi-species biofilms in the presence of 0.3, 0.6, 1, 2, 4, and 10 mg/L residual chlorine. Microbacterium laevaniformans inhibited the formation of multi-species biofilms, Sphingomonas sp., Acinetobacter sp. and A. deluvii had the effect of promoting their growth, and B. cereus has little effect on the growth of multi-species biofilms. However, these inhibition and promotion effects were weak and inadequate to completely control the growth of multi-species biofilms. All multi-species produced strong biofilms after 72 h incubation, which could be due to microbial community-intrinsic properties. Community-intrinsic properties could maintain high EPS production and cell-to-cell connections in multi-species biofilms, and could affect the formation of multi-species biofilms. The chlorine resistance of multi-species biofilms was significantly improved by B. cereus, but significantly reduced by M. laevaniformans. These results indicated that the microbial community-intrinsic properties were influenced by the environment. At a relatively low disinfectant concentration (<2 mg/L residual chlorine), the community-intrinsic properties were maintained; however, when the disinfectant concentration was increased to 2-4 mg/L residual chlorine, the community-intrinsic properties weakened, and significantly affected the resistance of the microbial communities to the disinfectant. With further increases in concentration, to >4 mg/L residual chlorine, no significant difference was observed in the disinfectant resistance of the microbial community.
Collapse
Affiliation(s)
- Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xinyun Zhang
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Fengping Hu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
8
|
Zhu Z, Shan L, Hu F, Li Z, Zhong D, Yuan Y, Zhang J. Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems. RSC Adv 2020; 10:31295-31304. [PMID: 35520667 PMCID: PMC9056398 DOI: 10.1039/d0ra04985a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
Biofilms are the main carrier of microbial communities throughout drinking water distribution systems (DWDSs), and strongly affect the safety of drinking water. Understanding biofilm formation potential and chlorine resistance is necessary for exploring future disinfection strategies and preventing water-borne diseases. This study investigated biofilm formation of five bacterial strains isolated from a simulated DWDS at different incubation times (24 h, 48 h, and 72 h), then evaluated chlorine resistance of 72 h incubated biofilms under chlorine concentrations of 0.3, 0.6, 1, 2, 4, and 10 mg L−1. All five bacterial strains had biofilm formation potential when incubated for 72 h. The biofilm formation potential of Acinetobacter sp. was stronger than that of Bacillus cereus, Microbacterium sp. and Sphingomonas sp. were moderate, and that of Acidovorax sp. was weak. In contrast, the order of chlorine resistance was Bacillus sp. > Sphingomonas sp. > Microbacterium sp. > Acidovorax sp. > Acinetobacter sp. Thus, the chlorine resistance of a single-species biofilm has little relation with the biofilm formation potential. The biofilm biomass is not a major factor affecting chlorine resistance. Moreover, the chlorine resistance of a single-species biofilm is highly related to the physiological state of bacterial cells, such as their ability to form spores or secrete extracellular polymeric substances, which could reduce the sensitivity of the single-species biofilm to a disinfectant or otherwise protect the biofilm. Biofilms are the main carrier of microbial communities throughout drinking water distribution systems (DWDSs), and strongly affect the safety of drinking water.![]()
Collapse
Affiliation(s)
- Zebing Zhu
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
- State Key Laboratory of Urban Water Resource and Environment
| | - Lili Shan
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
| | - Fengping Hu
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
| | - Zehua Li
- School of Civil Engineering and Architecture
- East China Jiao Tong University
- Nanchang
- China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment
- School of Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment
- School of Environment
- Harbin Institute of Technology
- Harbin
- China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment
- School of Environment
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|