1
|
Yu G, Dai C, Liu N, Xu R, Wang N, Chen B. Hydrocarbon Extraction with Ionic Liquids. Chem Rev 2024; 124:3331-3391. [PMID: 38447150 DOI: 10.1021/acs.chemrev.3c00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Separation and reaction processes are key components employed in the modern chemical industry, and the former accounts for the majority of the energy consumption therein. In particular, hydrocarbon separation and purification processes, such as aromatics extraction, desulfurization, and denitrification, are challenging in petroleum refinement, an industrial cornerstone that provides raw materials for products used in human activities. The major technical shortcomings in solvent extraction are volatile solvent loss, product entrainment leading to secondary pollution, low separation efficiency, and high regeneration energy consumption due to the use of traditional organic solvents with high boiling points as extraction agents. Ionic liquids (ILs), a class of designable functional solvents or materials, have been widely used in chemical separation processes to replace conventional organic solvents after nearly 30 years of rapid development. Herein, we provide a systematic and comprehensive review of the state-of-the-art progress in ILs in the field of extractive hydrocarbon separation (i.e., aromatics extraction, desulfurization, and denitrification) including (i) molecular thermodynamic models of IL systems that enable rapid large-scale screening of IL candidates and phase equilibrium prediction of extraction processes; (ii) structure-property relationships between anionic and cationic structures of ILs and their separation performance (i.e., selectivity and distribution coefficients); (iii) IL-related extractive separation mechanisms (e.g., the magnitude, strength, and sites of intermolecular interactions depending on the separation system and IL structure); and (iv) process simulation and design of IL-related extraction at the industrial scale based on validated thermodynamic models. In short, this Review provides an easy-to-read exhaustive reference on IL-related extractive separation of hydrocarbon mixtures from the multiscale perspective of molecules, thermodynamics, and processes. It also extends to progress in IL analogs, deep eutectic solvents (DESs) in this research area, and discusses the current challenges faced by ILs in related separation fields as well as future directions and opportunities.
Collapse
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
2
|
Song Z, Chen J, Cheng J, Chen G, Qi Z. Computer-Aided Molecular Design of Ionic Liquids as Advanced Process Media: A Review from Fundamentals to Applications. Chem Rev 2024; 124:248-317. [PMID: 38108629 DOI: 10.1021/acs.chemrev.3c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The unique physicochemical properties, flexible structural tunability, and giant chemical space of ionic liquids (ILs) provide them a great opportunity to match different target properties to work as advanced process media. The crux of the matter is how to efficiently and reliably tailor suitable ILs toward a specific application. In this regard, the computer-aided molecular design (CAMD) approach has been widely adapted to cover this family of high-profile chemicals, that is, to perform computer-aided IL design (CAILD). This review discusses the past developments that have contributed to the state-of-the-art of CAILD and provides a perspective about how future works could pursue the acceleration of the practical application of ILs. In a broad context of CAILD, key aspects related to the forward structure-property modeling and reverse molecular design of ILs are overviewed. For the former forward task, diverse IL molecular representations, modeling algorithms, as well as representative models on physical properties, thermodynamic properties, among others of ILs are introduced. For the latter reverse task, representative works formulating different molecular design scenarios are summarized. Beyond the substantial progress made, some future perspectives to move CAILD a step forward are finally provided.
Collapse
Affiliation(s)
- Zhen Song
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiahui Chen
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Cheng
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guzhong Chen
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiwen Qi
- State Key laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
3
|
Abstract
Condensable gases are the sum of condensable and volatile steam or organic compounds, including water vapor, which are discharged into the atmosphere in gaseous form at atmospheric pressure and room temperature. Condensable toxic and harmful gases emitted from petrochemical, chemical, packaging and printing, industrial coatings, and mineral mining activities seriously pollute the atmospheric environment and endanger human health. Meanwhile, these gases are necessary chemical raw materials; therefore, developing green and efficient capture technology is significant for efficiently utilizing condensed gas resources. To overcome the problems of pollution and corrosion existing in traditional organic solvent and alkali absorption methods, ionic liquids (ILs), known as "liquid molecular sieves", have received unprecedented attention thanks to their excellent separation and regeneration performance and have gradually become green solvents used by scholars to replace traditional absorbents. This work reviews the research progress of ILs in separating condensate gas. As the basis of chemical engineering, this review first provides a detailed discussion of the origin of predictive molecular thermodynamics and its broad application in theory and industry. Afterward, this review focuses on the latest research results of ILs in the capture of several important typical condensable gases, including water vapor, aromatic VOCs (i.e., BTEX), chlorinated VOC, fluorinated refrigerant gas, low-carbon alcohols, ketones, ethers, ester vapors, etc. Using pure IL, mixed ILs, and IL + organic solvent mixtures as absorbents also briefly expanded the related reports of porous materials loaded with an IL as adsorbents. Finally, future development and research directions in this exciting field are remarked.
Collapse
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Box 266, Beijing 100029, China
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
4
|
New interaction parameters from VLE data for group contribution (GC-NRTL) model. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Zhang Y, Su Z, Xue K, Xing J, Fan D, Qi J, Zhu Z, Wang Y. Efficient Separation of Methyl tert-Butyl Ether Using Ionic Liquids from Computational Thermodynamics to Process Intensification. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanli Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Zihao Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Ke Xue
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Jiafu Xing
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Dingchao Fan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Jianguang Qi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Zhaoyou Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao266042, China
| |
Collapse
|
6
|
Neubauer M, Wallek T, Lux S. Deep eutectic solvents as entrainers in extractive distillation – A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Finberg EA, May TL, Shiflett MB. Multicomponent Refrigerant Separation Using Extractive Distillation with Ionic Liquids. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ethan A. Finberg
- Institute for Sustainable Engineering, University of Kansas, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Tessie L. May
- Institute for Sustainable Engineering, University of Kansas, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Mark B. Shiflett
- Institute for Sustainable Engineering, University of Kansas, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Zhu R, Huang S, Gui C, Li G, Lei Z. Capturing low-carbon alcohols from CO2 gas with ionic liquids. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Guo C, Wang F, Xing J, Cui P. Thermodynamic and economic comparison of extractive distillation sequences for separating methanol/dimethyl carbonate/water azeotropic mixtures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Yu G, Wei Z, Chen K, Guo R, Lei Z. Predictive molecular thermodynamic models for ionic liquids. AIChE J 2022. [DOI: 10.1002/aic.17575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gangqiang Yu
- Faculty of Environment and Life Beijing University of Technology Beijing China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Kai Chen
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Ruili Guo
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| | - Zhigang Lei
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
11
|
Guo C. Energy-economic analysis of ionic liquids extractive-heat pump distillation process for recovery of ethanol and isopropyl alcohol from wastewater. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Amino Ethers of Ortho-Phosphoric Acid as Extragents for Ethanol Dehydration. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amino ethers of ortho-phosphoric acid prepared using triethanolamine; ortho-phosphoric acid; polyoxyethylene glycol, diethylene glycol, triethylene glycol and glycerol (AEPA-DEG/TEG/Gl) were investigated as extractants for the separation of aqueous ethanol solutions by extractive distillation. Using the method of open evaporation, the influence of the molecular structure of AEPA-DEG/TEG/Gl on the conditions of vapor–liquid equilibrium in ethanol–water solutions was studied. It has been shown that the addition of AEPA-DEG/TEG/Gl removes the azeotropic point. At the same time, the observed effect turned out to be significantly higher in comparison with the use of pure glycerol or glycols for these purposes. The UNIFAC model was used to calculate the activity coefficients in a three-component ethanol–water–AEPA-DEG/TEG/Gl mixture. Within the framework of this model, a division of AEPA-DEG/TEG/Gl molecules into group components is proposed. Previously unknown parameters of the groups PO–CH, PO–CH2, PO–OCH2, PO–NHCH2, PO–OH, and PO–H2O were determined from our own and published experimental data. The concentration dependences of the density and dynamic viscosity of AEPA-Gl aqueous solutions have been experimentally measured. Experimental studies of the extractive distillation of ethanol–water using AEPA-Gl as an extractant have been carried out in a column with bubble cap plates and a packing, and its high efficiency has been established.
Collapse
|
13
|
Peng D, Horvat DP, Picchioni F. Computer-Aided Ionic Liquid Design and Experimental Validation for Benzene–Cyclohexane Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daili Peng
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Diana P. Horvat
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| | - Francesco Picchioni
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, Groningen, AG 9747, The Netherlands
| |
Collapse
|