Reversible Photo-, Thermal-, and pH-Responsive Functionalized Wood with Fluorescence Emission.
MATERIALS 2022;
15:ma15031229. [PMID:
35161173 PMCID:
PMC8840444 DOI:
10.3390/ma15031229]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
A reversible photo-, thermal-, and pH-responsive high-performance functional wood with fluorescence has been prepared. The properties, structure, multi-response, fluorescence, water resistance, and corrosion resistance of original wood (ORW) and functional wood (FUW) were investigated with an X-ray photoelectron spectroscopy (XPS) spectrometer, a Fourier-transform infrared (FTIR) spectrometer, a N2 adsorption–desorption analyzer, an atomic force microscope (AFM), tensile tests, a scanning electron microscope (SEM), an ultraviolet–visible (UV–Vis) spectrophotometer, a fluorescence spectrometer, the equilibrium swelling ratio (ESR), and corrosion tests. The results of XPS, FTIR, N2 adsorption–desorption, and AFM exhibited that FUW was successfully prepared. Additionally, the results of the tensile test and SEM revealed that FUW had better mechanical properties than ORW, due to the filling of epoxy resin in the pores of the wood. Moreover, the UV–Vis and fluorescence spectra demonstrated that the introduction of epoxy resin induced multi-response and fluorescence functions to FUW. Furthermore, the data of ESR and corrosion test showed that the introduction of epoxy resin greatly improved the water and corrosion resistance of wood. This study provides ideas and methods for preparing novel high-performance multi-response FUW.
Collapse