1
|
Gao N, Yang Y, Wang Z, Guo X, Jiang S, Li J, Hu Y, Liu Z, Xu C. Viscosity of Ionic Liquids: Theories and Models. Chem Rev 2024; 124:27-123. [PMID: 38156796 DOI: 10.1021/acs.chemrev.3c00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Ionic liquids (ILs) offer a wide range of promising applications due to their unique and designable properties compared to conventional solvents. Further development and application of ILs require correlating/predicting their pressure-viscosity-temperature behavior. In this review, we firstly introduce methods for calculation of thermodynamic inputs of viscosity models. Next, we introduce theories, theoretical and semi-empirical models coupling various theories with EoSs or activity coefficient models, and empirical and phenomenological models for viscosity of pure ILs and IL-related mixtures. Our modelling description is followed immediately by model application and performance. Then, we propose simple predictive equations for viscosity of IL-related mixtures and systematically compare performances of the above-mentioned theories and models. In concluding remarks, we recommend robust predictive models for viscosity at atmospheric pressure as well as proper and consistent theories and models for P-η-T behavior. The work that still remains to be done to obtain the desired theories and models for viscosity of ILs and IL-related mixtures is also presented. The present review is structured from pure ILs to IL-related mixtures and aims to summarize and quantitatively discuss the recent advances in theoretical and empirical modelling of viscosity of ILs and IL-related mixtures.
Collapse
Affiliation(s)
- Na Gao
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Ye Yang
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Zhiyuan Wang
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Xin Guo
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Siqi Jiang
- Sinopec Engineering Incorporation, Beijing 100195, P. R. China
| | - Jisheng Li
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Yufeng Hu
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing at Karamay, Karamay 834000, China
| | - Zhichang Liu
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing and High Pressure Fluid Phase Behavior & Property Research Laboratory, China University of Petroleum, Beijing 102249, P. R. China
| |
Collapse
|
2
|
Yambou EP, Gorska B, Béguin F. Electrical Double-Layer Capacitors Based on a Ternary Ionic Liquid Electrolyte Operating at Low Temperature with Realistic Gravimetric and Volumetric Energy Outputs. CHEMSUSCHEM 2021; 14:1196-1208. [PMID: 33382192 DOI: 10.1002/cssc.202002809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/30/2020] [Indexed: 06/12/2023]
Abstract
We report on electrical double-layer capacitors (EDLCs) performing effectively at low temperature (down to -40 °C), owing to the tuned characteristics of both the ionic liquid (IL) electrolyte and carbonaceous electrodes. The transport properties of the electrolyte have been enhanced by adding a low-viscosity IL with the tetracyanoborate anion, [EMIm][TCB], to a mixture of [EMIm][FSI] with [EMIm][BF4 ], which was already successfully applied for this application. The formulated ternary electrolyte, [EMIm][FSI]0.6 [BF4 ]0.1 [TCB]0.3 , remained in the liquid state until it reached the glass transition at -99 °C and displayed a relatively low viscosity and high conductivity (η=23.6 mP s and σ=14.2 mS cm-1 at 20 °C, respectively). The electrodes were made of a hierarchical SiO2 -templated carbon with well-defined and uniform mesopores of ∼9 nm facilitating ion transport to the interconnected micropores accounted for the charge storage, whereas the high density of the electrodes promoted high volumetric energy outputs of the cells.
Collapse
Affiliation(s)
- Emmanuel Pameté Yambou
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Barbara Gorska
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - François Béguin
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
3
|
Bouarab AF, Harvey JP, Robelin C. Viscosity models for ionic liquids and their mixtures. Phys Chem Chem Phys 2021; 23:733-752. [DOI: 10.1039/d0cp05787h] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Review of principles and limitations of viscosity models for ionic liquids and their mixtures focusing on the use of inappropriate mixing rules for molten salts.
Collapse
Affiliation(s)
- Anya F. Bouarab
- Centre for Research in Computational Thermochemistry (CRCT)
- Department of Chemical Engineering
- Polytechnique Montréal
- Montréal
- Canada
| | - Jean-Philippe Harvey
- Centre for Research in Computational Thermochemistry (CRCT)
- Department of Chemical Engineering
- Polytechnique Montréal
- Montréal
- Canada
| | - Christian Robelin
- Centre for Research in Computational Thermochemistry (CRCT)
- Department of Chemical Engineering
- Polytechnique Montréal
- Montréal
- Canada
| |
Collapse
|