1
|
Kumar M, Singh V, Kumar S, Tathod AP, Arumugam S, Viswanadham N. Biodiesel-Derived Waste Glycerol as a Green Template for Creating Mesopores in the ZSM-5 Catalyst for Aromatics Production Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2686-2697. [PMID: 38277770 DOI: 10.1021/acs.langmuir.3c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The present study provides a novel sustainable approach for the synthesis of the ZSM-5 catalyst using biodiesel-derived waste glycerol as a green template as well as a mesopore creator, which is here reported for the first time, to the best of our knowledge. The use of bioglycerol in the preparation of ZSM-5 (Zn-Z-G and Zn-Z-T) materials exhibited a typical MFI zeolite structure, indicating glycerol played a similar role to that of a typical (TPA+) template in the formation of the ZSM-5 zeolite structure. The Zn-Z-G material also exhibited a large mesopore in the ZSM-5 pore structure, suggesting that glycerol played both template and mesopore creator roles. Interestingly, Zn-Z-GT prepared by the dual-template route using bioglycerol along with typical TPA+ showed a MFI zeolite structure with special catalytic features such as hierarchical micromesopores and well-balanced acid sites. These results reveal that the use of bioglycerol along with a typical TPA+ template had a promotional effect on creating such special properties in the Zn-Z-GT material. The Zn-Z-GT catalyst exhibited excellent catalytic performance in the naphtha aromatization reaction, resulting in achieving ∼58 wt % of the aromatic product and useful gas byproduct (14 wt %) with a minimum coke content (∼4 wt %) in a 12 h reaction period ascribed to its combined effect of hierarchical micromesopores and well-balanced acidity with optimum Lewis acid sites. The liquid product possessing high alkyl-aromatics with a high octane value (RON ∼ 109) produced in the present study can be used as an octane booster for liquid gasoline. The high alkyl-aromatics (>50 wt %) content of the liquid product also attracts various petrochemical applications. The effective utilization of waste bioglycerol as a green template and mesopore creator for the preparation of Zn-Z-GT can exhibit sustainability in the resultant material.
Collapse
Affiliation(s)
- Mahesh Kumar
- Light Stock Processing Division, Council of Scientific & Industrial Research-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijendra Singh
- Light Stock Processing Division, Council of Scientific & Industrial Research-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saurabh Kumar
- Light Stock Processing Division, Council of Scientific & Industrial Research-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anup Prakash Tathod
- Light Stock Processing Division, Council of Scientific & Industrial Research-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Selvamani Arumugam
- Light Stock Processing Division, Council of Scientific & Industrial Research-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagabhatla Viswanadham
- Light Stock Processing Division, Council of Scientific & Industrial Research-Indian Institute of Petroleum, Dehradun, Uttarakhand 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Li B, Gao J, Shao J, Geng R, Qin Z, Wang J, Fan W, Dong M. A Fine Analysis of Zn Species Structure and Distribution in Zn/ZSM-5 Catalysts by Linear Combination Fitting Analysis of XANES Spectra. Molecules 2024; 29:631. [PMID: 38338375 PMCID: PMC10856302 DOI: 10.3390/molecules29030631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Investigating the distribution of different Zn species on Zn-containing zeolite catalysts is crucial for identifying the active sites and establishing the relationship between the catalyst's structure and its activity in the process of ethylene aromatization. By utilizing X-ray absorption near edge spectra (XANES) of various reference samples, this study employed linear combination fitting (LCF) analysis on XANES spectra of real samples to accurately measure the changes in the distribution of Zn species in Zn-containing HZSM-5 zeolites under different Zn sources and loadings. The results showed that ZnOH+, ZnO clusters, and ZnO crystalline structures coexist in Zn/HZSM-5 catalysts prepared through physical mixing and incipient wet impregnation methods. A similar trend was observed for catalysts prepared using different methods, with an increase in Zn content resulting in a decrease in the proportion of ZnOH+ and a significant increase in the amount of larger ZnO crystals. Furthermore, ZnO clusters were confined within the zeolite pores. The findings of this study established a direct correlation between the amount of ZnOH+ determined through LCF analysis and both the rate of hydrogen production and the rate of aromatics formation, providing strong evidence for the catalytic role of ZnOH+ as an active center for dehydrogenation, which plays a key role in promoting the formation of aromatics. The method of LCF analysis on XANES spectra allows for the determination of the local structure of Zn species, facilitating a more precise analysis based on the distribution of these species. This method not only provides detailed information about the Zn species but also enhances the accuracy of the overall analysis.
Collapse
Affiliation(s)
- Baichao Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Gao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, China
| | - Jiabei Shao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Geng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Jianguo Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
3
|
Geng R, Liu Y, Guo Y, Wang P, Dong M, Wang S, Wang J, Qin Z, Fan W. Structure Evolution of Zn Species on Fresh, Deactivated, and Regenerated Zn/ZSM-5 Catalysts in Ethylene Aromatization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Rui Geng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yacong Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanxia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|
4
|
Gao D, Zhi Y, Cao L, Zhao L, Gao J, Xu C. Optimizing the Acid Properties of the HZSM-5 Catalyst for Increasing the p-Xylene Yield in 1-Hexene Aromatization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Yibo Zhi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Liyuan Cao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Liang Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Jinsen Gao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing, P. R. China 102249
| |
Collapse
|
5
|
Yang J, He Y, He J, Liu Y, Geng H, Chen S, Lin L, Liu M, Chen T, Jiang Q, Weckhuysen BM, Luo W, Wu Z. Enhanced Catalytic Performance through In Situ Encapsulation of Ultrafine Ru Clusters within a High-Aluminum Zeolite. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiangqian Yang
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Ying He
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Jiang He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanshuai Liu
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Huawei Geng
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Laoshan District, Qingdao 266101, China
| | - Shaohua Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lu Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Meng Liu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| | - Tiehong Chen
- School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, Utrecht 3584CG, The Netherlands
| | - Wenhao Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhijie Wu
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum-Beijing, Fuxue Road 18,
Changping, Beijing 102249, China
| |
Collapse
|
6
|
Gao D, Zhi Y, Cao L, Zhao L, Gao J, Xu C, Ma M, Hao P. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Direct hydrothermal synthesis of Mo-containing MFI zeolites using Mo-EDTA complex and their catalytic application in cyclohexene epoxidation. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63826-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Zn-P Co-Modified Hierarchical ZSM-5 Zeolites Directly Synthesized via Dry Gel Conversion for Enhanced Methanol to Aromatics Reaction. Catalysts 2021. [DOI: 10.3390/catal11111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A unique method to prepare Zn-P co-modified hierarchical ZSM-5 zeolites was developed. The ZSM-5 zeolite was directly synthesized by a dry gel conversion without adding any templates or seeds. Afterwards, the hierarchical structure was endowed to the ZSM-5 zeolite by the sequential desilication-dealumination. Zn and P species were then introduced into the hierarchical ZSM-5 zeolites by the impregnation method and their activity in methanol to aromatics process was investigated. It was found that the Zn-P co-modified hierarchical ZSM-5 zeolites possessed more Zn-related Lewis acid sites, and the ratio of Zn(OH)+/ZnO was increased. The catalytic evaluation results revealed that the benzene, toluene and xylene (BTX) and aromatics selectivity were significantly improved from 20.59% and 29.41% of pristine ZSM-5 zeolite to 28.12% and 41.88% of Zn-P co-modified hierarchical counterpart (1.5Zn0.3P/HZSM-5), respectively. Owing to the introduced highly stable Zn-P co-modified hierarchical structures, the lifetime (conversion not less than 99%) of ZSM-5 zeolite during methanol to aromatics reaction was increased from 6 h to 18 h.
Collapse
|
9
|
Chen Z, Liu L, Shi F, Zhou W, Yang Z, Zhou A. Hydroisomerization with a Hierarchical SAPO‐11 Supported Ni Catalyst: Effect of DTAB Content[]**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhiping Chen
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
- The State Key Laboratory of Green and Safe Coal Development in Western China Xi'an University of Science and Technology Xi'an China
| | - Li Liu
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Faxiang Shi
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
| | - Wenwu Zhou
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
- The State Key Laboratory of Green and Safe Coal Development in Western China Xi'an University of Science and Technology Xi'an China
| | - Zhiyuan Yang
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
- The State Key Laboratory of Green and Safe Coal Development in Western China Xi'an University of Science and Technology Xi'an China
| | - Anning Zhou
- School of Chemistry and Chemical Engineering Xi'an University of Science and Technology Xi'an China
- The State Key Laboratory of Green and Safe Coal Development in Western China Xi'an University of Science and Technology Xi'an China
| |
Collapse
|
10
|
Ajumobi O, Su Y, Farinmade A, Yu L, He J, Valla JA, John VT. Integrating Halloysite Nanostraws in Porous Catalyst Supports to Enhance Molecular Transport. ACS APPLIED NANO MATERIALS 2021; 4:8455-8464. [PMID: 34485846 PMCID: PMC8406414 DOI: 10.1021/acsanm.1c01678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/27/2021] [Indexed: 05/11/2023]
Abstract
In many porous catalyst supports, the accessibility of interior catalytic sites to reactant species could be restricted due to limitations of reactant transport through pores comparable to reactant dimensions. The interplay between reaction and diffusion in porous catalysts is defined through the Thiele modulus and the effectiveness factor, with diffusional restrictions leading to high Thiele moduli, reduced effectivess factors, and a reduction in the observed reaction rate. We demonstrate a method to integrate ceramic nanostraws into the interior of ordered mesoporous silica MCM-41 to mitigate diffusional restrictions. The nanostraws are the natural aluminosilicate tubular clay minerals known as halloysite. Such halloysite nanotubes (HNTs) have a lumen diameter of 15-30 nm, which is significantly larger than the 2-4 nm pores of MCM-41, thus facilitating entry and egress of larger molecules to the interior of the pellet. The method of integrating HNT nanostraws into MCM-41 is through a ship-in-a-bottle approach of synthesizing MCM-41 in the confined volume of an aerosol droplet that contains HNT nanotubes. The concept is applied to a system in which microcrystallites of Ni@ZSM-5 are incorporated into MCM-41. Using the liquid phase reduction of nitrophenol as a model reaction catalyzed by Ni@ZSM-5, we show that the insertion of HNT nanostraws into this composite leads to a 50% increase in the effectiveness factor. The process of integrating nanostraws into MCM-41 through the aerosol-assisted approach is a one-step facile method that complements traditional catalyst preparation techniques. The facile and scalable synthesis technique toward the mitigation of diffusional restrictions has implications to catalysis and separation technologies.
Collapse
Affiliation(s)
- Oluwole Ajumobi
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Yang Su
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Azeem Farinmade
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Lei Yu
- Department
of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jibao He
- Coordinated
Instrumentation Facility, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| | - Julia A. Valla
- Department
of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Vijay T. John
- Department
of Chemical & Biomolecular Engineering, Tulane University, 6823 St. Charles Avenue, New Orleans, Louisiana 70118, United States
| |
Collapse
|