2
|
Chen J, Zhang M, Shen C, Gao S. Preparation and Characterization of Non-N-Bonded Side-Chain Anion Exchange Membranes Based on Poly(2,6-dimethyl-1,4-phenylene oxide). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Junjie Chen
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Mingliang Zhang
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunhui Shen
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Shanjun Gao
- Department of Polymer Materials & Engineering, School of Materials Science & Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Han J, Song W, Cheng X, Cheng Q, Zhang Y, Liu C, Zhou X, Ren Z, Hu M, Ning T, Xiao L, Zhuang L. Conductivity and Stability Properties of Anion Exchange Membranes: Cation Effect and Backbone Effect. CHEMSUSCHEM 2021; 14:5021-5031. [PMID: 34498428 DOI: 10.1002/cssc.202101446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The rise of heterocycle cations, a new class of stable cations, has fueled faster growth of research interest in heterocycle cation-attached anion exchange membranes (AEMs). However, once cations are grafted onto backbones, the effect of backbones on properties of AEMs must also be taken into account. In order to comprehensively study the influence of cations effect and backbones effect on AEMs performance, a series of AEMs were prepared by grafting spacer cations, heterocycles cations, and aromatic cations onto brominated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) or poly(vinylbenzyl chloride) (PVB) backbones, respectively. Spacer cation [trimethylamine (TMA), N,N-dimethylethylamine (DMEA)]-attached AEMs showed general ion transportation and stability behaviors, but exhibited high cationic reaction efficiency. Heterocycle cation [1-methylpyrrolidine (MPY), 1-methylpiperidine (MPrD)]-attached AEMs showed excellent chemical stability, but their ion conduction properties were unimpressive. Aromatic cation [1-methylimidazole (MeIm), N,N-dimethylaniline (DMAni)]-attached AEMs exhibited superior ionic conductivity, while their poor cations stabilities hindered the application of the membranes. Besides, it was found that PVB-based AEMs had excellent backbone stability, but BPPO-based AEMs exhibited higher OH- conductivity and cation stability than those of the same cations grafted PVB-based AEMs due to their higher water uptake (WU). For example, the ionic conductivities (ICs) of BPPO-TMA and PVB-TMA at 80 °C were 53.1 and 38.3 mS cm-1 , and their WU was 152.3 and 95.1 %, respectively. After the stability test, the IC losses of BPPO-TMA and PVB-TMA were 21.4 and 32.2 %, respectively. The result demonstrated that the conductivity and stability properties of the AEMs could be enhanced by increasing the WU of the membranes. These findings allowed the matching of cations to the appropriate backbones and reasonable modification of the AEM structure. In addition, these results helped to fundamentally understand the influence of cation effect and backbone effect on AEM performance.
Collapse
Affiliation(s)
- Juanjuan Han
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Wenfeng Song
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xueqi Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Qiang Cheng
- Early Warning Simulation Training Center, People's Liberation Army Air Force Early Warning Academy, Wuhan, 430019, P. R. China
| | - Yangyang Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Chifeng Liu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Xiaorong Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Zhandong Ren
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, P. R. China
| | - Meixue Hu
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Tianshu Ning
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
5
|
Xu F, Chen Y, Lin B, Li J, Qiu K, Ding J. Highly Durable Ether-Free Polyfluorene-Based Anion Exchange Membranes for Fuel Cell Applications. ACS Macro Lett 2021; 10:1180-1185. [PMID: 35549033 DOI: 10.1021/acsmacrolett.1c00506] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The preparation of anion exchange membranes (AEMs) with excellent chemical and dimensional stability and high conductivity faces several challenges. In the present work, a novel ether-free durable polyfluorene (PF) without fluorine-bearing pendant piperidinium groups was synthesized by the Suzuki cross-coupling reaction. Alkyl groups were introduced into the backbone of PF to enhance the solubility and flexibility of PF-based AEMs, and the transparent and flexible polymer membrane showed a high conductivity of 80.44 mS cm-1 and excellent alkaline stability in 2 M KOH solution at 80 °C. Although the membrane possesses a high ion exchange capacity (IEC) (2.49 mequiv g-1), it exhibits a low swelling ratio (9.4% at 80 °C), excellent mechanical properties, and dimensional stability. The H2/O2 single cell assembled with PFPE-Pi exhibited a maximum power density of 661 mW cm-2 at a current density of 1280 mA cm-2 at 80 °C. The present work provides a simple and effective strategy for the preparation of ether-free polyfluorene-based AEMs with high conductivity, excellent mechanical properties, and dimensional stability for application in alkaline fuel cells.
Collapse
Affiliation(s)
- Fei Xu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Yanbo Chen
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Bencai Lin
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Li
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ke Qiu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|