1
|
Zhang M, Fu Z, Chen H, Yu J, Zhang L, Yang C, Zhou Y, Hua Y, Wang X, Ji H. Highly exposed metal atomic active sites in Al 2O 3/CoNC: Modify reaction pathways by coupling oxygen species. J Colloid Interface Sci 2024; 676:859-870. [PMID: 39067221 DOI: 10.1016/j.jcis.2024.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
The catalytic oxidation of formaldehyde (HCHO) at ambient temperature is a highly efficient, cost-effective and environmentally friendly approach for formaldehyde removal. Reactive oxygen (O*) and reactive hydroxyl groups (OH*) are the main active species in the catalytic oxidation reaction of HCHO. Therefore, it is crucial to design catalysts that can simultaneously enhance the surface concentrations of O* and OH*, thereby improving their overall catalytic performance. The present study aimed to design an Al2O3/CoNC catalyst featuring layered carbon nitride coupled with metal oxides possessing domain-limited cobalt (Co) metal active sites, to efficiently remove HCHO (≈100 %, 100 ppm, RH=50 %, GSHV=20,000 mL/(g h)) and ensure stability (more than 90 % formaldehyde removal within 450 h) at ambient temperature. The characterization revealed that the interaction between Al2O3-supported metal and CoNC resulted in enhanced confinement of Co, leading to a higher abundance of edge structures exposing more active sites. Additionally, the presence of highly dispersed Co-NX active sites and increased oxygen vacancies effectively facilitated the adsorption and activation processes of HCHO and O2, as well as the adsorption and desorption dynamics of intermediates during the reaction. These factors collectively contributed to an improved catalytic activity. The results of in situ infrared spectroscopy revealed that the catalyst improved the adsorption and activation of O2 and H2O, leading to the rapid generation of substantial amounts of O* and OH*. This synergistic interaction between Al2O3 and CoNC plays a crucial role in the sustained production of O* and OH*, promoting efficient of intermediate decomposition, and ensuring excellent catalytic activity and stability for HCHO.
Collapse
Affiliation(s)
- Manyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhijian Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jia Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Liwen Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd, Ningbo, China
| | - Yingjie Hua
- School of Chemistry and Chemical Engineering, the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, China
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Jiangsu Zhongjiang Institute of Materials Technology, Zhenjiang, China; School of Chemistry and Chemical Engineering, the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, China; Ningbo Solartron Technology Co., Ltd, Ningbo, China.
| | - Hongbing Ji
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Jiangsu Zhongjiang Institute of Materials Technology, Zhenjiang, China.
| |
Collapse
|
2
|
Wei X, Kang J, Gan L, Wang W, Yang L, Wang D, Zhong R, Qi J. Recent Advances in Co 3O 4-Based Composites: Synthesis and Application in Combustion of Methane. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1917. [PMID: 37446434 DOI: 10.3390/nano13131917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
In recent years, it has been found that adjusting the organizational structure of Co3O4 through solid solution and other methods can effectively improve its catalytic performance for the oxidation of low concentration methane. Its catalytic activity is close to that of metal Pd, which is expected to replace costly noble metal catalysts. Therefore, the in-depth research on the mechanism and methods of Co3O4 microstructure regulation has very important academic value and economic benefits. In this paper, we reviewed the catalytic oxidation mechanism, microstructure regulation mechanism, and methods of nano-Co3O4 on methane gas, which provides reference for the development of high-activity Co3O4-based methane combustion catalysts. Through literature investigation, it is found that the surface energy state of nano-Co3O4 can be adjusted by loading of noble metals, resulting in the reduction of Co-O bond strength, thus accelerating the formation of reactive oxygen species chemical bonds, and improving its catalytic effect. Secondly, the use of metal oxides and non-metallic oxide carriers helps to disperse and stabilize cobalt ions, improve the structural elasticity of Co3O4, and ultimately improve its catalytic performance. In addition, the performance of the catalyst can be improved by adjusting the microstructure of the composite catalyst and optimizing the preparation process. In this review, we summarize the catalytic mechanism and microstructure regulation of nano-Co3O4 and its composite catalysts (embedded with noble metals or combined with metallic and nonmetallic oxides) for methane combustion. Notably, this review delves into the substance of measures that can be used to improve the catalytic performance of Co3O4, highlighting the constructive role of components in composite catalysts that can improve the catalytic capacity of Co3O4. Firstly, the research status of Co3O4 composite catalyst is reviewed in this paper. It is hoped that relevant researchers can get inspiration from this paper and develop high-activity Co3O4-based methane combustion catalyst.
Collapse
Affiliation(s)
- Xinfang Wei
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jiawei Kang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lin Gan
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Wei Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Lin Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Dijia Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Tang H, Zhang J, Huang M, Zhang J, Zhou Y, Wang G, Wang R, Chen J. Remarkable performance of atomically dispersed cobalt catalyst for catalytic removal of indoor formaldehyde. J Colloid Interface Sci 2022; 624:527-536. [PMID: 35679640 DOI: 10.1016/j.jcis.2022.05.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 11/15/2022]
Abstract
The single atom catalysts have been widely studied in the catalytic reaction due to their 100% atomic utilization and ultra-high catalytic activity. However, the catalytic removal of formaldehyde on single atom catalysts have not been studied extensively and its catalytic mechanism is still unclear. In this work, atomically dispersed Co catalysts anchored in porous nitrogen-doped carbon were synthetized and the coordination environment of single Co atoms were further proved by the results of XAFS spectrum. The optimal atomically dispersed Co catalysts preformed outstanding removal performance for low-concentration HCHO (∼1 ppm) at room temperature. Furthermore, DFT calculations reveal the HCHO removal mechanism on atomically dispersed Co catalysts, which showed that HCHO molecules can react with O2 molecules adsorbed on single-atom Co sites through the Langmuir-Hinshelwood (L-H) pathway to generate CO2 and H2O at room temperature (HCHO → HCOO* → CO2). This work provides a promising lead for exploring single-atom Co catalysts for HCHO oxidation.
Collapse
Affiliation(s)
- Haiyan Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Meng Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China.
| |
Collapse
|
4
|
NiCo-LDH@MnO2 nanocages as advanced catalysts for efficient formaldehyde elimination. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhou L, Wang C, Li Y, Liu X, Deng H, Shan W, He H. The effect of hydrogen reduction of α-MnO2 on formaldehyde oxidation: The roles of oxygen vacancies. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Unraveling the Reaction Mechanism of HCHO Catalytic Oxidation on Pristine Co3O4 (110) Surface: A Theoretical Study. Catalysts 2022. [DOI: 10.3390/catal12050560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Various reaction mechanisms for the catalytic degradation of formaldehyde (HCHO) remain to be debated. Density functional theory (DFT) was applied to investigate whether the catalytic oxidation of HCHO on pristine Co3O4 (110) surface follows the Mars-van Krevelen (MvK) mechanism or the Langmuir–Hinshelwood (L-H) mechanism. Firstly, HCHO and O2 co-adsorb on the surface and two H atoms from HCHO are peculiarly prone to transfer to O2, forming CO and HOOH. For the MvK mechanism, CO2 is generated through CO grabbing a lattice oxygen. Meanwhile, the O–O bond of HOOH is broken into two OH groups. One OH fills the oxygen vacancy and its H atom moves to another OH group for H2O formation. For the L-H mechanism, CO directly obtains one OH group to generate COOH. Subsequently, the H atom of COOH transfers to another OH group along with CO2 and H2O generation. Both two mechanisms exhibit a similar maximum activation barrier. The lattice oxygen in the MvK mechanism and the surface-absorbed OH group in the L-H mechanism are the key reactive oxygen species. The small difference in energetic span further suggests that the catalytic cycle through the two mechanisms is feasible. This theoretical study provides new insight into the catalytic reaction path of HCHO oxidation on pristine Co3O4 surface.
Collapse
|
7
|
Mu B, Zhang X, Zhang Y, Lu P, Hao J, Zhang J. Solution combustion derived oxygen vacancy-rich Co 3O 4 catalysts for catalytic formaldehyde oxidation at room temperature. RSC Adv 2022; 12:9821-9827. [PMID: 35424938 PMCID: PMC8961794 DOI: 10.1039/d2ra00783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Fabricating abundant oxygen vacancies is crucial for non-noble metal oxides to catalyze formaldehyde (HCHO) oxidation at room temperature. Here, a simple one-pot preparation method via solution combustion was found to produce oxygen vacancy-rich Co3O4 catalysts, avoiding delicate defect engineering. The catalyst was evaluated to result in 52% HCHO conversion in a dynamic flow reaction with ∼6 ppm HCHO, which was higher as compared to some other Co3O4 catalysts prepared in three methods of sol–gel, deposition precipitation and thermal decomposition. The optimal catalyst also exhibited high durability with steady HCHO conversion (∼47%) for more than 50 h. The catalyst characterizations revealed that the explosive solution combustion brought out two particular features of Co3O4, namely, the porous network structure with nano-holes and the abundant oxygen vacancies. The latter was demonstrated to increase the reactive oxygen species and to improve the reducibility and the oxygen transport capacity of Co3O4. The two features and the derived properties are beneficial to the activity and durability of Co3O4. The solution combustion method can serve as a simple and feasible way to fabricate abundant oxygen vacancies to provide room-temperature activity of Co3O4 for HCHO elimination at room temperature. The rich oxygen vacancies in porous Co3O4 were generated in solution combustion, offering high room-temperature activity for formaldehyde oxidation.![]()
Collapse
Affiliation(s)
- Baolin Mu
- School of Materials Science and Engineering, Taiyuan University of Science and Technology 66 Waliu Road Taiyuan 030024 People's Republic of China.,Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 People's Republic of China
| | - Xianjuan Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 People's Republic of China .,School of Materials Science and Chemical Engineering, Ningbo University 818 Fenghua Road Ningbo 315211 People's Republic of China
| | - Yexin Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 People's Republic of China .,University of the Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 People's Republic of China
| | - Peng Lu
- School of Materials Science and Chemical Engineering, Ningbo University 818 Fenghua Road Ningbo 315211 People's Republic of China
| | - Jianying Hao
- School of Materials Science and Engineering, Taiyuan University of Science and Technology 66 Waliu Road Taiyuan 030024 People's Republic of China
| | - Jian Zhang
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 People's Republic of China .,University of the Chinese Academy of Sciences 19A Yuquan Road Beijing 100049 People's Republic of China
| |
Collapse
|
8
|
Li Q, Yue ZH, Li YL, Hao YJ, Wang XJ, Su R, Li FT. Construction of Dual-Defective Al2O3/Bi12O17Cl2 Heterojunctions for Enhanced Photocatalytic Molecular Oxygen Activation via Defect Coupling and Charge Separation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c04440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zi-han Yue
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yi-lei Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ying-juan Hao
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Xiao-jing Wang
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ran Su
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Fa-tang Li
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface, College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
9
|
Huang M, Chen J, Tang H, Jiao Y, Zhang J, Wang G, Wang R. Improved oxygen activation over metal-organic-frameworks derived and zinc-modulated Co@NC catalyst for boosting indoor gaseous formaldehyde oxidation at room temperature. J Colloid Interface Sci 2021; 601:833-842. [PMID: 34116471 DOI: 10.1016/j.jcis.2021.05.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
The indoor low-concentration formaldehyde (HCHO) removal in cobalt-based catalysts is still a "hot potato". In this work, metal-organic-frameworks (MOF)-derived and Zinc (Zn)-modulated new cobalt nanoparticles catalyst (CZ-Co@NC-800) was designed and prepared. The CZ-Co@NC-800 performed outstanding elimination activities for ~1 ppm HCHO at 25 °C. In the static test condition, it achieves complete HCHO removal in 3 h at a relative humidity (RH) of ~55%. Moreover, 90.18% HCHO removal ratio is held after five recycle tests. In the dynamic test condition, it remains the characteristic to eliminate around 95.89% of HCHO within 8 h under an RH of ~55% and a gas hourly space velocity (GHSV) of ~150,000 mL·h-1g-1. Such advanced results should be ascribed to large specific surface area bringing about more cobalt active sites; and it is also because residual Zn metal affects the electronic structure of CZ-Co@NC-800 and enhance the surface charge transfer rate, thus the activation and dissociation ability of oxygen is promoted. Besides, a short HCHO reaction path over CZ-Co@NC-800 which was clarified by the In situ DRIFTs is also a reason for excellent catalytic performance. This work represents a crucial addition to expand the family of cobalt-based catalysts for indoor HCHO elimination.
Collapse
Affiliation(s)
- Meng Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China.
| | - Haiyan Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Jiao
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China; Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu 610065, China.
| |
Collapse
|