1
|
Xiao Y, Li J, Tan Y, Chen X, Bai F, Luo W, Ding Y. Ni-Based Hydrotalcite (HT)-Derived Cu Catalysts for Catalytic Conversion of Bioethanol to Butanol. Int J Mol Sci 2023; 24:14859. [PMID: 37834306 PMCID: PMC10573630 DOI: 10.3390/ijms241914859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/27/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Catalytic conversion of biomass-derived ethanol into n-butanol through Guerbet coupling reaction has become one of the key reactions in biomass valorization, thus attracting significant attention recently. Herein, a series of supported Cu catalysts derived from Ni-based hydrotalcite (HT) were prepared and performed in the continuous catalytic conversion of ethanol into butanol. Among the prepared catalysts, Cu/NiAlOx shows the best performance in terms of butanol selectivity and catalyst stability, with a sustained ethanol conversion of ~35% and butanol selectivity of 25% in a time-on-stream (TOS) of 110 h at 280 °C. While for the Cu/NiFeOx and Cu/NiCoOx, obvious catalyst deactivation and/or low butanol selectivity were obtained. Extensive characterization studies of the fresh and spent catalysts, i.e., X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Hydrogen temperature-programmed reduction (H2-TPR), reveal that the catalysts' deactivation is mainly caused by the support deconstruction during catalysis, which is highly dependent on the reducibility. Additionally, an appropriate acid-base property is pivotal for enhancing the product selectivity, which is beneficial for the key process of aldol-condensation to produce butanol.
Collapse
Affiliation(s)
- Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Jie Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Xingkun Chen
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (J.L.)
| | - Fenghua Bai
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China (W.L.)
| | - Wenhao Luo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, China (W.L.)
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Wang Z, Yin M, Pang J, Wu P, Song L, Li X, Zheng M. Enhanced Conversion of Ethanol into n-Butanol over NiCeO 2@CNTs Catalysts with Pore Enrichment Effects. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Zhinuo Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian, Liaoning116028, China
| | - Ming Yin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Pengfei Wu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Lei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Xianquan Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing100049, China
| | - Mingyuan Zheng
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, Liaoning116023, China
| |
Collapse
|
3
|
Li J, Lin L, Tan Y, Wang S, Yang W, Chen X, Luo W, Ding Y. High performing and stable Cu/NiAlOx catalysts for the continuous catalytic conversion of ethanol into butanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Li
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Lu Lin
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Yuan Tan
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Shiyi Wang
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Wenshao Yang
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Xingkun Chen
- Zhejiang Normal University Hangzhou Institute of Advanced Studies CHINA
| | - Wenhao Luo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian Institute of Chemical Physics CHINA
| | - Yunjie Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian National Laboratory for Clean Energy 457 zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
4
|
Shittu T, Khaleel A, Polychronopoulou K, Altarawneh M. Functionalized ceria–niobium supported nickel catalysts for gas phase semi-hydrogenation of phenylacetylene to styrene. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We illustrated a complete and selective gas phase hydrogenation of phenylacetylene into styrene over a Ni-NbCeOx catalyst. Optimum operational conditions for this reaction are presented.
Collapse
Affiliation(s)
- Toyin Shittu
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Abbas Khaleel
- Department of Chemistry, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Center for Catalysts and Separation, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Department of Mechanical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohammednoor Altarawneh
- Department of Chemical and Petroleum Engineering, United Arab Emirates University, Sheikh Khalifa Bin Zayed Street, Al-Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Neumann CN, Payne MT, Rozeveld SJ, Wu Z, Zhang G, Comito RJ, Miller JT, Dincă M. Structural Evolution of MOF-Derived RuCo, A General Catalyst for the Guerbet Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52113-52124. [PMID: 34405986 DOI: 10.1021/acsami.1c09873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guerbet alcohols, a class of β-branched terminal alcohols, find widespread application because of their low melting points and excellent fluidity. Because of the limitations in the activity and selectivity of existing Guerbet catalysts, Guerbet alcohols are not currently produced via the Guerbet reaction but via hydroformylation of oil-derived alkenes followed by aldol condensation. In pursuit of a one-step synthesis of Guerbet alcohols from simple linear alcohol precursors, we show that MOF-derived RuCo alloys achieve over a million turnovers in the Guerbet reaction of 1-propanol, 1-butanol, and 1-pentanol. The active catalyst is formed in situ from ruthenium-impregnated metal-organic framework MFU-1. XPS and XAS studies indicate that the precatalyst is composed of Ru precursor trapped inside the MOF pores with no change in the oxidation state or coordination environment of Ru upon MOF incorporation. The significantly higher reactivity of Ru-impregnated MOF versus a physical mixture of Ru precursor and MOF suggests that the MOF plays an important role in templating the formation of the active catalyst and/or its stabilization. XPS reveals partial reduction of both ruthenium and MOF-derived cobalt under the Guerbet reaction conditions, and TEM/EDX imaging shows that Ru is decorated on the edges of dense nanoparticles, as well as thin nanoplates of CoOx. The use of ethanol rather than higher alcohols as a substrate results in lower turnover frequencies, and RuCo recovered from ethanol upgrading lacks nanostructures with plate-like morphology and does not exhibit Ru-enrichment on the surface and edge sites. Notably, 1H and 31P NMR studies show that through use of K3PO4 as a base promoter in the RuCo-catalyzed alcohol upgrading, the formation of carboxylate salts, a common side product in the Guerbet reaction, was effectively eliminated.
Collapse
Affiliation(s)
- Constanze N Neumann
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael T Payne
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Steven J Rozeveld
- Core R&D, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Zhenwei Wu
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Robert J Comito
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey T Miller
- Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|