1
|
Zhang R, Gao Y, Chen L, Li D, Ge G. Tunable Gas-Gas Reactions through Nanobubble Pathway. Chemphyschem 2023; 24:e202300429. [PMID: 37534533 DOI: 10.1002/cphc.202300429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/04/2023]
Abstract
Combustible gas-gas reactions usually do not occur spontaneously upon mixing without ignition or other triggers to lower the activation energy barrier. Nanobubbles, however, could provide such a possibility in solution under ambient conditions due to high inner pressure and catalytic radicals within their boundary layers. Herein, a tunable gas-gas reaction strategy via bulk nanobubble pathway is developed by tuning the interface charge of one type of bulk nanobubble and promoting its fusion and reaction with another, where the reaction-accompanied size and number concentration change of the bulk nanobubbles and the corresponding thermal effect clearly confirm the occurrence of the nanobubble-based H2 /O2 combustion. In addition, abundant radicals can be detected during the reaction, which is considered to be critical to ignite the gas reaction during the fusion of nanobubbles in water at room temperature. Therefore, the nanobubble-based gas-gas reactions provide a safe and efficient pathway to produce energy and synthesize new matter inaccessible under mild or ambient conditions.
Collapse
Affiliation(s)
- Ruiyi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Dexing Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Zhou K, Maugard V, Zhang W, Zhou J, Zhang X. Effects of Gas Type, Oil, Salts and Detergent on Formation and Stability of Air and Carbon Dioxide Bubbles Produced by Using a Nanobubble Generator. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091496. [PMID: 37177046 PMCID: PMC10180106 DOI: 10.3390/nano13091496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
Recent developments in ultrafine bubble generation have opened up new possibilities for applications in various fields. Herein, we investigated how substances in water affect the size distribution and stability of microbubbles generated by a common nanobubble generator. By combining light scattering techniques with optical microscopy and high-speed imaging, we were able to track the evolution of microbubbles over time during and after bubble generation. Our results showed that air injection generated a higher number of microbubbles (<10 μm) than CO2 injection. Increasing detergent concentration led to a rapid increase in the number of microbubbles generated by both air and CO2 injection and the intensity signal detected by dynamic light scattering (DLS) slightly increased. This suggested that surface-active molecules may inhibit the growth and coalescence of bubbles. In contrast, we found that salts (NaCl and Na2CO3) in water did not significantly affect the number or size distribution of bubbles. Interestingly, the presence of oil in water increased the intensity signal and we observed that the bubbles were coated with an oil layer. This may contribute to the stability of bubbles. Overall, our study sheds light on the effects of common impurities on bubble generation and provides insights for analyzing dispersed bubbles in bulk.
Collapse
Affiliation(s)
- Kaiyu Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Vincent Maugard
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Wenming Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Joe Zhou
- Disruptive Separation Technology Ltd. (DSTL), Edmonton, AB T6X 1M5, Canada
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
3
|
Cao L, Liu Q, Peng Y. The surface energy and surface charge of microbubbles generated by frother surfactants. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
4
|
Zhou K, Sontti SG, Zhou J, Esmaeili P, Zhang X. Microbubble-Enhanced Bitumen Separation from Tailing Slurries with High Solid Contents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Kaiyu Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Somasekhara Goud Sontti
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| | - Joe Zhou
- Disruptive Separation Technology Ltd. (DSTL), Edmonton, AlbertaT6X 1M5, Canada
| | | | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AlbertaT6G 1H9, Canada
| |
Collapse
|
5
|
An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. MINERALS 2022. [DOI: 10.3390/min12080944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with diverse properties were created by altering preparation time (0, 1, 2, 3, 5, and 7 min), aeration rate (0, 0.5, 1, 1.5, and 2 L/min) and aging time (0, 0.5, 1, and >3 min). Micro- and nano-bubbles were characterized using focused beam reflection measurements (FBRM) and nanoparticle tracking analysis (NTA), respectively. The micro-flotation of quartz particles was performed using an XFG-cell in the presence and absence of BMNBs with Cetyltrimethylammonium bromide (CTAB) as a collector. The characterization of bubble sizes showed that the bulk micro-bubble (BMB) and bulk nanobubble (BNB) diameters ranged from 1–10 μm and 50–400 nm, respectively. It was found that the preparation parameters and aging time considerably affected the number of generated bubbles. When BNBs and BMBs coexisted, the recovery of fine quartz particles significantly improved (about 7%), while in the presence of only BNBs the promotion of flotation recovery was not significant (2%). This was mainly related to the aggregate via bridging, which was an advantage for quartz flotation. In comparison, no aggregates were detected when only nano-bubbles were present in the bulk solution.
Collapse
|
6
|
Zhang W, Yu S, Zhao H, Ji X, Ning R. Vacuum membrane distillation for seawater concentrate treatment coupled with microbubble aeration cleaning to alleviate membrane fouling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
7
|
Zhang R, Gao Y, Chen L, Ge G. Controllable preparation of monodisperse nanobubbles by membrane sieving. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Gao Y, Francis K, Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res Int 2022; 157:111246. [DOI: 10.1016/j.foodres.2022.111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
9
|
Zhang R, Gao Y, Chen L, Ge G. Nanobubble boundary layer thickness quantified by solvent relaxation NMR. J Colloid Interface Sci 2021; 609:637-644. [PMID: 34839918 DOI: 10.1016/j.jcis.2021.11.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/12/2022]
Abstract
HYPOTHESIS The boundary layer holds the key to solve the puzzle of the unusual stability of the nanobubbles in solution. The quantitative determination on its mechanical and structural properties has not been achieved due to its diffusive and dynamic nature, lack of distinctive interfaces, and difficult differentiation from bulk background. Therefore, it is necessary to investigate this boundary using more sensitive interface analysis technologies to effectively differentiate the water molecules at the interface from those in the bulk. EXPERIMENTS An in-situ and non-deconstructive method, solvent relaxation nuclear magnetic resonance, was used to investigate the boundary layer on bulk nanobubbles, where the relaxation rate of the water in the layer and its thickness were measured by solvent relaxation NMR and the ratio between the water molecules at the bubble interfaces and those in the bulk and the corresponding boundary layer thickness were determined. FINDINGS The spin-spin relaxation time for the water in the layer (∼101ms) is found to be two orders of magnitude lower than that of the free water (∼103ms). As the first attempt, the determined boundary layer thickness is around 35-45 nm and 17.0 %-8.7 % of the effective gaseous size of the nanobubbles, which increases with the decrease of the bubble diameter. As a result, a quantitative measurement model for bubble boundary layer has been established in order to better understand the interfacial properties and stabilization mechanism for bulk nanobubbles.
Collapse
Affiliation(s)
- Ruiyi Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ya Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lan Chen
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Guanglu Ge
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| |
Collapse
|