1
|
Song Y. Solubility and Mass Transfer Performance of Ethane and n-Butane in Menthol and Decanoic Acid Deep Eutectic Solvent. ACS OMEGA 2024; 9:30935-30944. [PMID: 39035921 PMCID: PMC11256098 DOI: 10.1021/acsomega.4c03895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
The absorption performance and mechanism of the deep eutectic solvent (DES), composed of menthol and decanoic acid, were investigated. The solubility of volatile organic compounds (VOCs) in the DES was studied through saturation solution experiments, wherein the solubility of ethane and n-butane increases with a decrease in temperature and increasing pressure. Henry's law constants of ethane and n-butane in the DES at 288.2 K were 2.089 and 0.136 MPa, respectively, demonstrating the high solubility for light hydrocarbons that surpasses or equals that of ionic liquids. The mass transfer and regeneration performance of the DES were investigated by using dynamic bubbling experiments. Results demonstrated that the removal rate of both ethane and n-butane increased as the gas flow rate decreased and the VOC concentration in the model gas increased. Specifically, the removal rate of ethane reached 99.50% at a temperature of 293.2 K, a VOC concentration VOC of 10,000 μmol/mol, and a gas flow rate of 30 mL/min, while the removal rate of n-butane was higher than that of ethane under the same conditions, achieving a removal rate exceeding 99.99%. Furthermore, no significant decrease in the removal rate for n-butane was observed during the four regeneration processes. Interaction energies between the VOC molecule and DES were calculated using the quantum chemistry method. It was found that the interactions between the VOC molecule and DES are primarily attributed to dispersion attractive effects which belong to weak interactions; therefore, the absorption of light hydrocarbon by the DES belongs to a physical process. The DES has been proven to be effective for the recovery of light hydrocarbons, providing a promising approach to address the key challenge in comprehensive treatment of VOCs in the petrochemical industry.
Collapse
Affiliation(s)
- Yunfei Song
- State
Key Laboratory of Chemical Safety, Qingdao, Shandong 266000, China
- SINOPEC
Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong 266000, China
| |
Collapse
|
2
|
Wang W, Zhu J, Huang Q, Zhu L, Wang D, Li W, Yu W. DFT Exploration of Metal Ion-Ligand Binding: Toward Rational Design of Chelating Agent in Semiconductor Manufacturing. Molecules 2024; 29:308. [PMID: 38257221 PMCID: PMC10819218 DOI: 10.3390/molecules29020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Chelating agents are commonly employed in microelectronic processes to prevent metal ion contamination. The ligand fragments of a chelating agent largely determine its binding strength to metal ions. Identification of ligands with suitable characteristics will facilitate the design of chelating agents to enhance the capture and removal of metal ions from the substrate in microelectronic processes. This study employed quantum chemical calculations to simulate the binding process between eleven ligands and the hydrated forms of Ni2+, Cu2+, Al3+, and Fe3+ ions. The binding strength between the metal ions and ligands was quantified using binding energy and binding enthalpy. Additionally, we explored the binding interaction mechanisms and explained the differences in binding abilities of the eleven ligands using frontier molecular orbitals, nucleophilic indexes, electrostatic potentials, and energy decomposition calculations based on molecular force fields. Based on our computational results, promising chelating agent structures are proposed, aiming to guide the design of new chelating agents to address metal ion contamination issues in integrated circuit processes.
Collapse
Affiliation(s)
- Wenyuan Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (W.W.)
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| | - Junli Zhu
- Shanghai Institute of IC Materials Co., Ltd., Shanghai 201899, China;
| | - Qi Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
- Shanghai Institute of IC Materials Co., Ltd., Shanghai 201899, China;
| | - Lei Zhu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (W.W.)
| | - Weimin Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| | - Wenjie Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (W.W.)
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| |
Collapse
|
3
|
Makoś-Chełstowska P. VOCs absorption from gas streams using deep eutectic solvents - A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130957. [PMID: 36860043 DOI: 10.1016/j.jhazmat.2023.130957] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) are one of the most severe atmospheric pollutants. They are mainly emitted into the atmosphere from anthropogenic sources such as automobile exhaust, incomplete fuel combustion, and various industrial processes. VOCs not only cause hazards to human health or the environment but also adversely affect industrial installation components due to their specific properties, i.e., corrosive and reactivity. Therefore, much attention is being paid to developing new methods for capturing VOCs from gaseous streams, i.e., air, process streams, waste streams, or gaseous fuels. Among the available technologies, absorption based on deep eutectic solvents (DES) is widely studied as a green alternative to other commercial processes. This literature review presents a critical summary of the achievements in capturing individual VOCs using DES. The types of used DES and their physicochemical properties affecting absorption efficiency, available methods for evaluating the effectiveness of new technologies, and the possibility of regeneration of DES are described. In addition, critical comments on the new gas purification methods and future perspectives are included.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; EcoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
4
|
Intelligent modeling of the hydrogen sulfide removal by deep eutectic solvents for the environmental protection. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Candia-Lomelí M, Covarrubias-Garcia I, Aizpuru A, Arriaga S. Preparation and physicochemical characterization of deep eutectic solvents and ionic liquids for the potential absorption and biodegradation of styrene vapors. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129835. [PMID: 36087530 DOI: 10.1016/j.jhazmat.2022.129835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Styrene emissions can be treated by physicochemical, biological, or physicochemical/biological means. Due to its low solubility in water an alternative to eliminate styrene emissions from air is the use of two-phase partitioning bioreactors (TPPBs) which comprised a hydrophobic non-aqueous phase (NAP) which can improve mass transfer of styrene. This study was devoted to prepare and evaluate the main physicochemical characteristics of novel NAPs such as Ionic liquids (ILs), Deep Eutectic Solvents (DESs) and Natural Deep Eutectic Solvents (NADEs) as well as their toxicity and biodegradability to treat styrene vapors. Absorption experiments of styrene showed that the best NAPs were the DESs formed with Tetrabutylammonium bromide and decanoic acid and the ILs [C6mim][FAP], [C4mim] [NTf2] and [C4mim] [PF6], since they presented a styrene partition coefficient between 0.0015 and 0.0041. Finally, the IL [C6mim][FAP] was used as a NAP in a TPPB batch process given its high styrene affinity, low solubility in water and non-biodegradability; styrene mineralization was three times higher in the TPPB compared with the control. ILs are potential adjuvant phases in biological degradation systems, as well as other solvents like DESs and NADESs.
Collapse
Affiliation(s)
- M Candia-Lomelí
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a, Sección, CP 78216 San Luis Potosí, SLP, Mexico
| | - I Covarrubias-Garcia
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a, Sección, CP 78216 San Luis Potosí, SLP, Mexico
| | - A Aizpuru
- Universidad del Mar, Campus Puerto Ángel, 70902 San Pedro Pochutla, Oaxaca, Mexico
| | - S Arriaga
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a, Sección, CP 78216 San Luis Potosí, SLP, Mexico.
| |
Collapse
|
6
|
Xing J, Qu Y, Su Z, Zhou M, Sun C, Wang Y, Cui P. Phase Equilibria and Mechanism Insights into the Separation of Isopropyl Acetate and Methanol by Deep Eutectic Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiafu Xing
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| | - Yajuan Qu
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| | - Zihao Su
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| | - Mengjin Zhou
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| | - Chao Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| | - Yinglong Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| | - Peizhe Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao266042, P. R. China
| |
Collapse
|
7
|
Cheng Y, Yang B, Li G, Chen K, Wei Z, Gao X, Li H, Lei Z. Transesterification reactive extractive distillation process using ionic liquids as entrainers: From molecular insights to process integration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Mu M, Zhang X, Yu G, Xu R, Liu N, Wang N, Chen B, Dai C. Effective absorption of dichloromethane using deep eutectic solvents. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129666. [PMID: 35905610 DOI: 10.1016/j.jhazmat.2022.129666] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chlorinated volatile organic compounds (VOCs), of which dichloromethane (DCM) has become one of the main components because of its extensive use and strong volatility, are recognized as extremely hazardous and refractory pollutants in the atmosphere. The efficient treatment of DCM is of great significance to the protection of environment and human health. In this work, the strategy of DCM capture with deep eutectic solvents (DESs) with different hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) was proposed and systematically investigated. The experimental results show that tetrabutylphosphonium chloride: levulinic acid ([P4444][Cl]-LEV) presents the most excellent DCM absorption capacity among all DESs studied and considerable capacity in [P4444][Cl]-LEV (1:2) with 899 mg DCM/g DES (5.58 mol DCM/mol DES) at 30 °C and DCM partial pressure of 0.3 bar can be achieved. The microscopic absorption mechanism is explored by 1HNMR and FT-IR spectra as well as quantum chemistry calculations, indicating that the absorption is a physical process. The interaction energy analysis suggests that the greater the interaction energy between DES and DCM, the greater the saturated absorption capacity of DCM. The hydrogen bond (HB) contributes most to the weak interaction between DCM and HBA/HBD, and both HBA and HBD play an important role in the absorption of DCM.
Collapse
Affiliation(s)
- Mingli Mu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Xinfeng Zhang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ruinian Xu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Liu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Biaohua Chen
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| | - Chengna Dai
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
9
|
Dai C, Chen M, Mu W, Peng B, Yu G, Liu N, Xu R, Wang N, Chen B. Highly efficient toluene absorption with π-electron donor-based deep eutectic solvents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Li G, Liu Q, Gui C, Lei Z. Thermodynamic and molecular insights into natural gas dehydration using choline chloride‐based deep eutectic solvents. AIChE J 2022. [DOI: 10.1002/aic.17662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Qinghua Liu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| |
Collapse
|
11
|
Chen CC, Huang YH, Fang JY. Hydrophobic deep eutectic solvents as green absorbents for hydrophilic VOC elimination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127366. [PMID: 34653856 DOI: 10.1016/j.jhazmat.2021.127366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
As a common hydrophilic volatile organic compound (VOC), acetone is known to harm human health and the atmospheric environment. Absorption is a typical technique applied to capture hydrophilic VOCs; however, the difficulty of separating and recovering absorbed hydrophilic VOCs (e.g., acetone) from aqueous absorbents has become one of the major challenges in practical applications. Hydrophobic deep eutectic solvents (DESs) have therefore been developed as novel green absorbents for capturing hydrophilic VOCs in the present work. The compiled results show that efficient hydrophilic VOC elimination can be accomplished by the proposed hydrophobic DESs through high absorption capacity and thermodynamically favorable gas-to-liquid mass transfer. Among the explored DESs, the hydrophobic DES containing thymol [Thy] and decanoic acid [DecA] with a molar ratio of 1:1 has achieved the highest absorption capacity of acetone, i.e., 6.57 mg acetone per g DES at 20 °C and 1480 ppm acetone. The oxygen of acetone interacts favorably with the hydrogen atom of [Thy] upon absorption, rendering hydrogen bonding interaction surpassing polarity as the key factor in attaining superior solubility of acetone in DESs. Moreover, the absorbed acetone can be easily removed from Thy-based DESs, realizing an effective hydrophilic VOC elimination process with economic and ecological benefits.
Collapse
Affiliation(s)
- Chun-Chi Chen
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407, Taiwan, ROC.
| | - Yen-Hui Huang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407, Taiwan, ROC
| | - Jia-Yu Fang
- Department of Environmental Engineering and Science, Feng Chia University, Taichung City 407, Taiwan, ROC
| |
Collapse
|
12
|
Panda S, Fourmentin S. Cyclodextrin-based supramolecular low melting mixtures: efficient absorbents for volatile organic compounds abatement. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:264-270. [PMID: 34490573 DOI: 10.1007/s11356-021-16279-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Cyclodextrins (CDs) and deep eutectic solvents (DESs) are emerging absorbent materials for the removal of volatile organic compounds (VOCs). In this study, we have used combination of modified CDs and levulinic acid to form four DESs analogs, referred to as supramolecular low-melting mixtures (LMMs), to study their absorption characteristics towards five VOCs, namely acetaldehyde, butanone, dichloromethane, thiophene, and toluene. The supramolecular LMMs showed up to 250-fold reduction in the vapor-liquid partition coefficients compared to water. The overall absorption capacity found to be synergistic and seemed to be dictated by the hydrophobicity of the VOCs. Toluene and dichloromethane were absorbed at 99 and 95% by the supramolecular LMMs, respectively, even at higher concentrations, with a linear relationship between the concentration and absorption capacity. The LMMs also retained their absorption capacities even after five absorption/desorption cycles.
Collapse
Affiliation(s)
- Somenath Panda
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France
| | - Sophie Fourmentin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, SFR Condorcet FR CNRS 3417, F-59140, Dunkerque, France.
| |
Collapse
|
13
|
Li G, Gui C, Zhu R, Lei Z. Deep eutectic solvents for efficient capture of cyclohexane in volatile organic compound
s
: Thermodynamic and molecular mechanism. AIChE J 2021. [DOI: 10.1002/aic.17535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guoxuan Li
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Ruisong Zhu
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
| | - Zhigang Lei
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Chemistry and Chemical Engineering Shihezi University Shihezi China
| |
Collapse
|
14
|
Makoś-Chełstowska P, Słupek E, Kramarz A, Gębicki J. New Carvone-Based Deep Eutectic Solvents for Siloxanes Capture from Biogas. Int J Mol Sci 2021; 22:ijms22179551. [PMID: 34502455 PMCID: PMC8431123 DOI: 10.3390/ijms22179551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/24/2023] Open
Abstract
During biogas combustion, siloxanes form deposits of SiO2 on engine components, thus shortening the lifespan of the installation. Therefore, the development of new methods for the purification of biogas is receiving increasing attention. One of the most effective methods is physical absorption with the use of appropriate solvents. According to the principles of green engineering, solvents should be biodegradable, non-toxic, and have a high absorption capacity. Deep eutectic solvents (DES) possess such characteristics. In the literature, due to the very large number of DES combinations, conductor-like screening models for real solvents (COSMO-RS), based on the comparison of siloxane activity coefficient of 90 DESs of various types, were studied. DESs, which have the highest affinity to siloxanes, were synthesized. The most important physicochemical properties of DESs were carefully studied. In order to explain of the mechanism of DES formation, and the interaction between DES and siloxanes, the theoretical studies based on σ-profiles, and experimental studies including the 1H NMR, 13C NMR, and FT-IR spectra, were applied. The obtained results indicated that the new DESs, which were composed of carvone and carboxylic acids, were characterized by the highest affinity to siloxanes. It was shown that the hydrogen bonds between the active ketone group (=O) and the carboxyl group (-COOH) determined the formation of stable DESs with a melting point much lower than those of the individual components. On the other hand, non-bonded interactions mainly determined the effective capture of siloxanes with DES.
Collapse
Affiliation(s)
- Patrycja Makoś-Chełstowska
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
- EcoTech Center, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Edyta Słupek
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
| | - Aleksandra Kramarz
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
| | - Jacek Gębicki
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland; (P.M.-C.); (E.S.); (A.K.)
- Correspondence:
| |
Collapse
|