1
|
Wang W, Ning H, Fei X, Wang X, Ma Z, Jiao Z, Wang Y, Tsubaki N, Wu M. Trace Ionic Liquid-Assisted Orientational Growth of Cu 2 O (110) Facets Promote CO 2 Electroreduction to C 2 Products. CHEMSUSCHEM 2023; 16:e202300418. [PMID: 37096401 DOI: 10.1002/cssc.202300418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/07/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Cu2 O has great advantages for CO2 electroreduction to C2 products, of which the activity and selectivity are closely related to its crystal facets. In this work, density functional theory calculation indicated that the (110) facets of Cu2 O had a lower energy barrier for the C-C coupling compared to the (100) and (111) facets. Therefore, Cu2 O(110) facets were successfully synthesized with the assistance of trace amounts of the ionic liquid 1-butyl-3-methylimidazolium ([Bmim]BF4 ) by a sample wet-chemical method. A high faradaic efficiency of 71.1 % and a large current density of 265.1 mA cm-2 toward C2 H4 and C2 H5 OH were achieved at -1.1 V (vs. reversible hydrogen electrode) in a flow cell. The in situ and electrochemical analysis indicated that it possessed the synergy effects of strong adsorption of *CO2 and *CO, large active area, and excellent conductivity. This study provided a new way to enhance the C2 selectivity of CO2 electroreduction on Cu2 O by crystal structure engineering.
Collapse
Affiliation(s)
- Wenhang Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Hui Ning
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Xiang Fei
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Xiaoshan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Zhengguang Ma
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Zhenmei Jiao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Yani Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, College of New Energy, China University of Petroleum (East China), No. 66, West Changjiang Road, Huangdao District, Qingdao, 266580, P. R. China
| |
Collapse
|
2
|
Wang Y, Wang T, Rong Z, Wang Y, Qu J. Role of Hydroxyl on Metal Surface in Hydrogenation Reactions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Liu G, Yang G, Peng X, Wu J, Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev 2022; 51:5606-5659. [PMID: 35705080 DOI: 10.1039/d0cs01003k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, as one of the important bulk chemicals, is widely used in modern society. It can be produced by fermentation of sugar, petroleum refining, or conversion of syngas (CO/H2). Among these approaches, conversion of syngas to ethanol (STE) is the most environmentally friendly and economical process. Although considerable progress has been made in STE conversion, control of CO activation and C-C growth remains a great challenge. This review highlights recent advances in the routes and catalysts employed in STE technology. The catalyst designs and pathway designs are summarized and analysed for the direct and indirect STE routes, respectively. In the direct STE routes (i.e., one-step synthesis of ethanol from syngas), modified catalysts of methanol synthesis, modified catalysts of Fischer-Tropsch synthesis, Mo-based catalysts, noble metal catalysts and multifunctional catalysts are systematically reviewed based on their catalyst designs. Further, in the indirect STE routes (i.e., multi-step processes for ethanol synthesis from syngas via methanol/dimethyl ether as intermediates), carbonylation of methanol/dimethyl ether followed by hydrogenation, and coupling of methanol with CO to form dimethyl oxalate followed by hydrogenation, are outlined according to their pathway designs. The goal of this review is to provide a comprehensive perspective on STE technology and inspire the invention of new catalysts and pathway designs in the near future.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xiaobo Peng
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Jinhu Wu
- Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
4
|
Wang P, Wei S, Sun K, Li J, He C, Xu Y, Du X, Tan Y, Wu Y, Gao X. Study on the Synergistic Catalysis of CeO 2 Regulated Co 0–Co δ+ Dual Sites for Direct Synthesis of Higher Alcohols from Syngas. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peng Wang
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shuai Wei
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Kai Sun
- School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jing Li
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Changchun He
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yan Xu
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xihua Du
- School of Material and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Yingquan Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Xinhua Gao
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
5
|
Sun Z, Mi X, Luo Y, Wang S, Yuan B, Hao R, Zhao Y. Low-Medium Temperature-Selective Catalytic Reduction of NO with NH 3 over a Mn/Co-MOF-74 Catalyst. ACS OMEGA 2021; 6:34347-34358. [PMID: 34963920 PMCID: PMC8697000 DOI: 10.1021/acsomega.1c04077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
To realize the selective catalytic reduction of NO at low-medium temperatures and avoid secondary pollution, a highly active catalyst Mn/Co-MOF-74 was synthesized. X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller method, and scanning electron microscopy were employed to analyze the physicochemical properties of catalysts with different Mn/Co molar ratios and conjecture about the difference in the catalytic activity. Meanwhile, the effects of the molar ratio of Mn/Co, catalyst dosage, catalyst synthesis conditions, GHSV, and temperature on the NO conversion efficiencies were investigated and found that an optimal NO conversion efficiency of 93.5% was obtained at 200-225 °C. In the end, the stability of Mn/Co-MOF-74 was investigated and found that the catalyst has better sulfur and water resistance, and the NO conversion mechanism was speculated on the basis of characterizations and literature data.
Collapse
|
6
|
Damma D, Smirniotis PG. Recent advances in the direct conversion of syngas to oxygenates. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00813g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct synthesis of oxygenates from syngas is a promising way to utilize non-petroleum carbon resources because the oxygenate products serve as precursors for the downstream production of fuels and value-added chemicals.
Collapse
Affiliation(s)
- Devaiah Damma
- Chemical Engineering
- College of Engineering and Applied Science
- University of Cincinnati
- Cincinnati
- USA
| | - Panagiotis G. Smirniotis
- Chemical Engineering
- College of Engineering and Applied Science
- University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
7
|
Huang C, Ma P, Wang R, Li W, Wang J, Li H, Tan Y, Luo L, Li X, Bao J. CuCo alloy nanonets derived from CuCo 2O 4 spinel oxides for higher alcohols synthesis from syngas. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01179k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous CuCo alloy nanonets were used as superior catalysts for higher alcohol synthesis from syngas. The catalyst was fabricated via structural topological transformation of CuCo2O4 spinel precursor.
Collapse
Affiliation(s)
- Chao Huang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Wenjie Li
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Jingyan Wang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Hongliang Li
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Lei Luo
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Xu Li
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230029, Anhui, China
| |
Collapse
|