1
|
Kim KB, Sohn MS, Min S, Yoon JW, Park JS, Li J, Moon YK, Kang YC. Highly Selective and Reversible Detection of Simulated Breath Hydrogen Sulfide Using Fe-Doped CuO Hollow Spheres: Enhanced Surface Redox Reaction by Multi-Valent Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308963. [PMID: 38461524 DOI: 10.1002/smll.202308963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/19/2024] [Indexed: 03/12/2024]
Abstract
The precise and reversible detection of hydrogen sulfide (H2S) at high humidity condition, a malodorous and harmful volatile sulfur compound, is essential for the self-assessment of oral diseases, halitosis, and asthma. However, the selective and reversible detection of trace concentrations of H2S (≈0.1 ppm) in high humidity conditions (exhaled breath) is challenging because of irreversible H2S adsorption/desorption at the surface of chemiresistors. The study reports the synthesis of Fe-doped CuO hollow spheres as H2S gas-sensing materials via spray pyrolysis. 4 at.% of Fe-doped CuO hollow spheres exhibit high selectivity (response ratio ≥ 34.4) over interference gas (ethanol, 1 ppm) and reversible sensing characteristics (100% recovery) to 0.1 ppm of H2S under high humidity (relative humidity 80%) at 175 °C. The effect of multi-valent transition metal ion doping into CuO on sensor reversibility is confirmed through the enhancement of recovery kinetics by doping 4 at.% of Ti- or Nb ions into CuO sensors. Mechanistic details of these excellent H2S sensing characteristics are also investigated by analyzing the redox reactions and the catalytic activity change of the Fe-doped CuO sensing materials. The selective and reversible detection of H2S using the Fe-doped CuO sensor suggested in this work opens a new possibility for halitosis self-monitoring.
Collapse
Affiliation(s)
- Ki Beom Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Myung Sung Sohn
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Wook Yoon
- Department of Information Materials Engineering, Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin-Sung Park
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Young Kook Moon
- Department of Functional Ceramics, Ceramic Materials Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
Zhu C, Zheng M, Liao M, Jiang N, Xiao Y, Liu J, Zhang L, Guo J, Wu H, Yan H. A novel MOF-808 derived material for oxidative desulfurization: the synergistic effect of hydrophobicity and electron transfer. Dalton Trans 2024. [PMID: 39058426 DOI: 10.1039/d4dt01256a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
A functionalized modified metal-organic framework material, T-MOF-808, was synthesized through hydrophobic modification with tetraethyl orthosilicate (TEOS) and chlorotrimethylsilane (TMCS). Then a supported oxidative desulfurization catalyst, [C12Py]3(NH4)3Mo7O24/T-MOF-808(s), was prepared by using a heteropoly acid ionic liquid as the active component. The prepared samples were characterized using FT-IR, XRD, SEM, TEM, XPS, etc. [C12Py]3(NH4)3Mo7O24/T-MOF-808(s) was used in the oxidative desulfurization of dibenzothiophene (DBT). At the same time, the effects of different loadings of the active component, oxygen sulfur ratios, reaction temperatures, and reaction time were also investigated. [C12Py]3(NH4)3Mo7O24/T-MOF-808-15%(s) could oxidize 100% of DBT in 40 min at 60 °C. Significantly, the catalyst exhibited no discernible decline in catalytic activity after 14 runs. In addition, the efficiency of sulfur removal was 85.76% in actual diesel oil. It was found that the cooperative impact of hydrophobic modification and electron transfer makes an important contribution to the high activity. The hydrophobic modification provides a novel approach for using MOF materials in the oxidative desulfurization process.
Collapse
Affiliation(s)
- Chengzhao Zhu
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Miaomiao Zheng
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Mingyu Liao
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Nan Jiang
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Yuanjie Xiao
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Jianbin Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Linfeng Zhang
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Jia Guo
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Huadong Wu
- Key Laboratory of Green Chemical Process of Ministry of Education, Engineering Research Centre of Phosphorus Resources Development and Utilization of Ministry of Education, Hubei Key Laboratory of Novel Chemical Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430073, P. R. China.
| | - Hao Yan
- Army Logistics Academy, Chongqing 401331, PR China
| |
Collapse
|
3
|
Li Y, Li Y. Quantitative Fluorescent Lateral Flow Strip Sensor for Myocardial Infarction Using Purity-Color Upconversion Nanoparticles. Inorg Chem 2024; 63:5185-5198. [PMID: 38451175 DOI: 10.1021/acs.inorgchem.4c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Acute myocardial infarction is a serious cardiovascular disease and poses significant risks to human health. Its early diagnosis and real-time detection are of great importance. Herein, we design a low-cost device that has a high sensitivity of cTnT and cTnI detection. Dual-color upconversion nanoparticles (UCNPs) are prepared as probes, which not only have high-purity red upconversion luminescence (UCL) under 980 or 808 nm excitation but also achieve good temperature sensing. Temperature-dependent multicolor emission excitation is obtained, and the color turns from white to orange and red with increasing temperature. In particular, the maximum SR and SA values based on nonthermally coupled levels are 4.76% K-1 and 8.6% K-1, which are higher than those based on thermally coupled levels. With the UCNPs-based lateral flow strip (LFS), the specific detection of cTnI and cTnT antigens in samples is achieved with a detection limit of 0.001 ng/mL, which is 1 order of magnitude lower than that of their clinical cutoff. The UCNPs-LFS device has a low-cost laser diode and a simplified laser and permits a mobile-phone camera to collect the results, which has an important influence on the field of biomarker sensing.
Collapse
Affiliation(s)
- Yuemei Li
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yongmei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, No. 6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin 300134, China
| |
Collapse
|
4
|
Nazari MT, Schnorr C, Rigueto CVT, Alessandretti I, Melara F, da Silva NF, Crestani L, Ferrari V, Vieillard J, Dotto GL, Silva LFO, Piccin JS. A review of the main methods for composite adsorbents characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88488-88506. [PMID: 36334205 DOI: 10.1007/s11356-022-23883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Adsorption is a promising technology for removing several contaminants from aqueous matrices. In the last years, researchers worldwide have been working on developing composite adsorbents to overcome some limitations and drawbacks of conventional adsorbent materials, which depend on various factors, including the characteristics of the adsorbents. Therefore, it is essential to characterize the composite adsorbents to describe their properties and structure and elucidate the mechanisms, behavior, and phenomenons during the adsorption process. In this sense, this work aimed to review the main methods used for composite adsorbent characterization, providing valuable information on the importance of these techniques in developing new adsorbents. In this paper, we reviewed the following methods: X-Ray diffraction (XRD); spectroscopy; scanning electron microscopy (SEM); N2 adsorption/desorption isotherms (BET and BJH methods); thermogravimetry (TGA); point of zero charge (pHPZC); elemental analysis; proximate analysis; swelling and water retention capacities; desorption and reuse.
Collapse
Affiliation(s)
- Mateus T Nazari
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Carlos Schnorr
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Cesar V T Rigueto
- Graduate Program in Food Science and Technology (PPGCTA), Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Ingridy Alessandretti
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Flávia Melara
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Nathália F da Silva
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Larissa Crestani
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Valdecir Ferrari
- Graduate Program in Metallurgical, Materials, and Mining Engineering (PPG3M), Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Julien Vieillard
- CNRS, INSA Rouen, UNIROUEN, COBRA (UMR 6014 and FR 3038), Normandie University, Evreux, France
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Jeferson S Piccin
- Graduate Program in Civil and Environmental Engineering (PPGEng), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
- Graduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
5
|
Zhu Q, Li F, Zheng Y, Cao Y, Xiao Y, Liang S, Liu F, Jiang L. Dual-template approach to designing nitrogen functionalized, hierarchical porous carbons for efficiently selective capture and separation of SO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Islam MR, Saiduzzaman M, Nishat SS, Kabir A, Farhad S. Synthesis, characterization and visible light-responsive photocatalysis properties of Ce doped CuO nanoparticles: A combined experimental and DFT+U study. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|