1
|
Ratio of adsorptive abilities for NH3 and NOx determined SCR activity of transition-metal catalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
2
|
Hou D, Heard CJ. Migration of zeolite-encapsulated Pt and Au under reducing environments. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02270a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Simulations reveal accelerated migration of Pt@zeolite by reducing adsorbates and the importance of PtCO in early stages of particle growth.
Collapse
Affiliation(s)
- Dianwei Hou
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| | - Christopher J. Heard
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, 128 43 Prague 2, Czech Republic
| |
Collapse
|
3
|
The Study of C3H6 Impact on Selective Catalytic Reduction by Ammonia (NH3-SCR) Performance over Cu-SAPO-34 Catalysts. Catalysts 2021. [DOI: 10.3390/catal11111327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In present work, the catalytic performance of Cu-SAPO-34 catalysts with or without propylene during the NH3-SCR process was conducted, and it was found that the de-NOx activity decreased during low temperature ranges (<350 °C), but obviously improved within the range of high temperatures (>350 °C) in the presence of propylene. The XRD, BET, TG, NH3-TPD, NOx-TPD, in situ DRIFTS and gas-switch experiments were performed to explore the propylene effect on the structure and performance of Cu-SAPO-34 catalysts. The bulk characterization and TG results revealed that neither coke deposition nor the variation of structure and physical properties of catalysts were observed after C3H6 treatment. Generally speaking, at the low temperatures (<350 °C), active Cu2+ species could be occupied by propylene, which inhibited the adsorption and oxidation of NOx species, confining the SCR reaction rate and causing the deactivation of Cu-SAPO-34 catalysts. However, with the increase of reaction temperatures, the occupied Cu2+ sites would be recovered and sequentially participate into the NH3-SCR reaction. Additionally, C3H6-SCR reaction also showed the synergetic contribution to the improvement of NOx conversion at high temperature (>350 °C).
Collapse
|