1
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Han S, Li S, Wang H, Yang W, Sang L, Zhao Z. Hydrodynamics and liquid-solid mass transfer in micropacked bed reactors with copper foam packing. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Dong G, Chen B, Liu B, Hounjet LJ, Cao Y, Stoyanov SR, Yang M, Zhang B. Advanced oxidation processes in microreactors for water and wastewater treatment: Development, challenges, and opportunities. WATER RESEARCH 2022; 211:118047. [PMID: 35033742 DOI: 10.1016/j.watres.2022.118047] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/11/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The miniaturization of reaction processes by microreactors offers many significant advantages over the use of larger, conventional reactors. Microreactors' interior structures exhibit comparatively higher surface area-to-volume ratios, which reduce reactant diffusion distances, enable faster and more efficient heat and mass transfer, and better control over process conditions. These advantages can be exploited to significantly enhance the performance of advanced oxidation processes (AOPs) commonly used for the removal of water pollutants. This comprehensive review of the rapidly emerging area of environmental microfluidics describes recent advances in the development and application of microreactors to AOPs for water and wastewater treatment. Consideration is given to the hydrodynamic properties, construction materials, fabrication techniques, designs, process features, and upscaling of microreactors used for AOPs. The use of microreactors for various AOP types, including photocatalytic, electrochemical, Fenton, ozonation, and plasma-phase processes, showcases how microfluidic technology enhances mass transfer, improves treatment efficiency, and decreases the consumption of energy and chemicals. Despite significant advancements of microreactor technology, organic pollutant degradation mechanisms that operate during microscale AOPs remain poorly understood. Moreover, limited throughput capacity of microreactor systems significantly restrains their industrial-scale applicability. Since large microreactor-inspired AOP systems are needed to meet the high-throughput requirements of the water treatment sector, scale-up strategies and recommendations are suggested as priority research opportunities. While microstructured reactor technology remains in an early stage of development, this work offers valuable insight for future research and development of AOPs in microreactors for environmental purposes.
Collapse
Affiliation(s)
- Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada.
| | - Bo Liu
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Lindsay J Hounjet
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada
| | - Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Stanislav R Stoyanov
- Natural Resources Canada, CanmetENERGY Devon, 1 Oil Patch Drive, Devon, AB T9G 1A8, Canada.
| | - Min Yang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL A1B 3X5, Canada
| |
Collapse
|