1
|
Wang X, Liu C, Liu C, Shi Z, Liu X, Huang F. A chitosan macroporous hydrogel integrating enrichment, adsorption and delivery of blood clotting components for rapid hemostasis. Int J Biol Macromol 2024; 281:136482. [PMID: 39406331 DOI: 10.1016/j.ijbiomac.2024.136482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Traditional hemostatic hydrogels face considerable limitations in achieving rapid control of severe bleedings, a crucial factor in reducing casualties in both military and civilian settings. This study presents a chitosan-based hemostatic hydrogel with interconnected secondary macropores designed to enhance interactions with blood clotting components by reducing diffusion resistance and increasing contact area. The macropores were created using a straightforward process involving NaOH-mediated SiO2 template dissolution and NH3 generation. The resulting macroporous structure increased the hydrogel's overall porosity without compromising its viscoelasticity. Functional studies demonstrated that the macroporous hydrogel effectively concentrated and adsorbed blood clotting components, while also facilitating the delivery of artificially embedded clotting factor to further expedite clot formation. These combined actions resulted in improve hemostatic efficacy, reducing whole blood clotting time by over 94 % in vitro. Furthermore, in vivo studies using rat tail amputation and liver injury models showed a reduction in blood loss by over 65 % and a decrease in bleeding time by over 70 %. Additionally, the porous chitosan hydrogel exhibited minimal biotoxicity and promoted biodegradability in vivo. In conclusion, this work introduces a macroporous chitosan-based hemostatic hydrogel with great potential for rapid hemorrhage control.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Xiaodan Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
2
|
Xu Y, Tang L, Nok-iangthong C, Wagner M, Baumann G, Feist F, Bismarck A, Jiang Q. Functionally Gradient Macroporous Polymers: Emulsion Templating Offers Control over Density, Pore Morphology, and Composition. ACS APPLIED POLYMER MATERIALS 2024; 6:5150-5162. [PMID: 38752018 PMCID: PMC11091853 DOI: 10.1021/acsapm.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Gradient macroporous polymers were produced by polymerization of emulsion templates comprising a continuous monomer phase and an internal aqueous template phase. To produce macroporous polymers with gradient composition, pore size, and foam density, we varied the template formulation, droplet size, and internal phase ratio of emulsion templates continuously and stacked those prior to polymerization. Using the outlined approach, it is possible to vary one property along the resulting macroporous polymer while retaining the other properties. The elastic moduli and crush strengths change along the gradient of the macroporous polymers; their mechanical properties are dominated by those of the weakest layers in the gradient. Macroporous polymers with gradient chemical composition and thus stiffness provide both high impact load and energy adsorption, rendering the gradient foam suitable for impact protective applications. We show that dual-dispensing and simultaneous blending of two different emulsion formulations in various ratios results in a fine, bidirectional change of the template composition, enabling the production of true gradient macroporous polymers with a high degree of design freedom.
Collapse
Affiliation(s)
- Yufeng Xu
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Le Tang
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Chanokporn Nok-iangthong
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Markus Wagner
- Institute
for Vehicle Safety, Graz University of Technology, Inffeldgasse 13 VI, 8010 Graz, Austria
| | - Georg Baumann
- Institute
for Vehicle Safety, Graz University of Technology, Inffeldgasse 13 VI, 8010 Graz, Austria
| | - Florian Feist
- Institute
for Vehicle Safety, Graz University of Technology, Inffeldgasse 13 VI, 8010 Graz, Austria
| | - Alexander Bismarck
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, U.K.
| | - Qixiang Jiang
- Institute
of Material Chemistry and Research, Faculty of Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
3
|
Guo C, Wang Y, You Y, Chen M, Zhang K, Zhang S. Aminopoly(carboxylic acid)-Functionalized PolyHIPE Beads toward Eliminating Trace Heavy Metal Ions from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6107-6117. [PMID: 38466815 DOI: 10.1021/acs.langmuir.3c03050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Many advanced materials are designed for the removal of heavy metal ions from water. However, materials for eliminating trace heavy metal ions from wastewater to meet drinking water standards remain a major challenge. Herein, epoxy group-functionalized open-cellular beads are synthesized by UV polymerization of a water-in-oil-in-water system. The epoxy groups are further transformed into diethylenetriaminepentaacetic acid (DTPA) with hexamethylene diamine as a bridging agent. The resulting material (DTPA@polyHIPE beads) can eliminate trace Cu(II), Cr(III), Pb(II), Fe(III), or Cd(II) from water. When 0.15 g of DTPA@polyHIPE beads are used to adsorb metal ions of 20 mg in 100 mL of water, the residue concentrations of Cu(II), Cr(III), Pb(II), Fe(III), and Cd(II) are reduced to 0.08, 0.06, 0.02, 0.09, and 0.07 mg/L, respectively. The adsorption efficiencies of the beads for these ions are all higher than 99.55%. The adsorbent is durable and exhibits good recyclability by retaining an adsorption capacity of ≥91% after 5 cycles. The negative values of ΔG in the adsorption process indicate that the adsorption is feasible and spontaneous. The chemical adsorption follows the Freundlich adsorption model, indicating a multilayer heterogeneous adsorption. The DTPA@polyHIPE beads have a great potential application in dealing with trace heavy metal ion polluted water.
Collapse
Affiliation(s)
- Cuicui Guo
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiling Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yijing You
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mingjun Chen
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ka Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Wang X, Liu C, Liu C, Shi Z, Huang F. Development of alginate macroporous hydrogels using sacrificial CaCO 3 particles for enhanced hemostasis. Int J Biol Macromol 2024; 259:129141. [PMID: 38176504 DOI: 10.1016/j.ijbiomac.2023.129141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/16/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
Polymeric hydrogels have increasingly garnered attention in the field of hemostasis. However, there remains a lack of targeted development and evaluation of non-dense polymeric hydrogels with physically incorporated pores to enhance hemostasis. Here, we present a facile route to macroporous alginate hydrogels using acid-induced CaCO3 dissolution to provide Ca2+ for alginate gelation and CO2 bubbles for subsequent macropore formation. The as-prepared pore structure in the hydrogels and its formation mechanisms were characterized through microscopic imaging and nitrogen adsorption/desorption tests. Functional analyses revealed that the macroporous hydrogels exhibited improved rheology, blood absorption, coagulation factor delivery, and platelet aggregation. Ultimately, the introduction of pores significantly enhanced the hemostatic effectiveness of alginate hydrogels in vivo, as demonstrated in rat tail amputation and liver injury models, leading to a reduction in blood loss of up to 77 % or a decrease in bleeding time of up to 88 %. Notably, hydrogels with higher porosity achieved with a CaCO3 to alginate ratio of 40 % outperformed those with lower porosity in the aforementioned properties. Furthermore, these improvements were found to be biocompatible and elicited minimal inflammation. Our findings underscore the potential of a simple porous hydrogel design to enhance hemostasis efficacy by physically incorporating macropores.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| | - Chang Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Chengkun Liu
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Zhuang Shi
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing & College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao, Shandong 266580, China.
| |
Collapse
|
5
|
Chen J, Gao Y, Zuo S, Mao H, Li X, Liu W, Yao C, Gui H. Monolithic Catalysts Supported by Emulsion-Templated Porous Polydivinylbenzene for Continuous Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38295287 DOI: 10.1021/acs.langmuir.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A monolithic catalyst was fabricated through an emulsion-templating method, postpolymerization modification, and in situ loading of active constituents. To achieve a high specific surface area, divinylbenzene (DVB) was solely employed as the monomer, while the porous structure was adjusted with the porogen content and the types of initiators. Then, anchor points were introduced on the pore wall through nitration and amination of the polymeric scaffold. Using a controlled "silver mirror reaction", monolithic catalysts were obtained after loading of silver nanoparticles (Ag NPs), which was verified from morphological and crystallinity characteristics. The catalytic performance of the resultant monolithic catalyst was determined with the model reduction of 4-nitrophenol (4-NP). In static catalysis, the monolithic catalyst was proved to have a reactively high apparent rate constant and a good reusability. Furthermore, a flow reactor was fabricated with the monolithic catalyst, showing a high efficiency and long-term durability for the continuous reduction of 4-NP. This work broadened the adjustment of porous structures and the subsequent application for emulsion-templated monoliths.
Collapse
Affiliation(s)
- Jieyi Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Textiles, Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China
| | - Shixiang Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huihui Mao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Haoguan Gui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
6
|
Yin Z, Zhou Y, Liu X, Zhang S, Binks BP. Highly efficient and recyclable monolithic bioreactor for interfacial enzyme catalysis. J Colloid Interface Sci 2023; 648:308-316. [PMID: 37301155 DOI: 10.1016/j.jcis.2023.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
HYPOTHESIS Biocatalysts are key to the realization of all bioconversions in nature. However, the difficulty of combining the biocatalyst and other chemicals in one system limits their application in artificial reaction systems. Although some effort, such as Pickering interfacial catalysis and enzyme-immobilized microchannel reactors, have addressed this challenge an effective method to combine chemical substrates and biocatalysts in a highly efficient and re-usable monolith system is still to be developed. EXPERIMENTS A repeated batch-type biphasic interfacial biocatalysis microreactor was developed using enzyme-loaded polymersomes in the void surface of porous monoliths. Polymersomes, loaded with Candida antarctica Lipase B (CALB), are fabricated by self-assembly of the copolymer PEO-b-P(St-co-TMI) and used to stabilize oil-in-water (o/w) Pickering emulsions as a template to prepare monoliths. By adding monomer and Tween 85 to the continuous phase, controllable open-cell monoliths are prepared to inlay CALB-loaded polymersomes in the pore walls. FINDINGS The microreactor is proven to be highly effective and recyclable when a substrate flows through it, which offers superior benefits of absolute separation to a pure product and no enzyme loss. The relative enzyme activity is constantly maintained above 93% in 15 cycles. The enzyme is constantly present in the microenvironment of the PBS buffer ensuring its immunity to inactivation and facilitating its recycling.
Collapse
Affiliation(s)
- Zhengqiao Yin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiding Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiucai Liu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shengmiao Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bernard P Binks
- Department of Chemistry, University of Hull, Hull HU6 7RX. UK.
| |
Collapse
|
7
|
Foudazi R, Zowada R, Manas-Zloczower I, Feke DL. Porous Hydrogels: Present Challenges and Future Opportunities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2092-2111. [PMID: 36719086 DOI: 10.1021/acs.langmuir.2c02253] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this feature article, we critically review the physical properties of porous hydrogels and their production methods. Our main focus is nondense hydrogels that have physical pores besides the space available between adjacent cross-links in the polymer network. After reviewing theories on the kinetics of swelling, equilibrium swelling, the structure-stiffness relationship, and solute diffusion in dense hydrogels, we propose future directions to develop models for porous hydrogels. The aim is to show how porous hydrogels can be designed and produced for studies leading to the modeling of physical properties. Additionally, different methods that are used for making hydrogels with physically incorporated pores are briefly reviewed while discussing the potentials, challenges, and future directions for each method. Among kinetic methods, we discuss bubble generation approaches including reactions, gas injection, phase separation, electrospinning, and freeze-drying. Templating approaches discussed are solid-phase, self-assembled amphiphiles, emulsion, and foam methods.
Collapse
Affiliation(s)
- Reza Foudazi
- School of Chemical, Biological, and Materials Engineering, University of Oklahoma, Norman, Oklahoma73069, United States
| | - Ryan Zowada
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico88003, United States
| | | | | |
Collapse
|
8
|
Barkan-Öztürk H, Menner A, Bismarck A, Woodward RT. Simultaneous hypercrosslinking and functionalization of polyHIPEs for use as coarse powder catalyst supports. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
|
10
|
Qiu T, Xu G, Li X, Guo L. Synthesis of poly(lactic acid)-based macro-porous foams with thermo-active shape memory property via W/O high internal phase emulsion polymerization. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-04952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|