1
|
Baca KR, Al-Barghouti K, Wang N, Bennett MG, Matamoros Valenciano L, May TL, Xu IV, Cordry M, Haggard DM, Haas AG, Heimann A, Harders AN, Uhl HG, Melfi DT, Yancey AD, Kore R, Maginn EJ, Scurto AM, Shiflett MB. Ionic Liquids for the Separation of Fluorocarbon Refrigerant Mixtures. Chem Rev 2024; 124:5167-5226. [PMID: 38683680 DOI: 10.1021/acs.chemrev.3c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review discusses the research being performed on ionic liquids for the separation of fluorocarbon refrigerant mixtures. Fluorocarbon refrigerants, invented in 1928 by Thomas Midgley Jr., are a unique class of working fluids that are used in a variety of applications including refrigeration. Fluorocarbon refrigerants can be categorized into four generations: chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, and hydrofluoroolefins. Each generation of refrigerants solved a key problem from the previous generation; however, each new generation has relied on more complex mixtures that are often zeotropic, near azeotropic, or azeotropic. The complexity of the refrigerants used and the fact that many refrigerants form azeotropes when mixed makes handling the refrigerants at end of life extremely difficult. Today, less than 3% of refrigerants that enter the market are recycled. This is due to a lack of technology in the refrigerant reclaim market that would allow for these complex, azeotropic refrigerant mixtures to be separated into their components in order to be effectively reused, recycled, and if needed repurposed. As the market for recovering and reclaiming refrigerants continues to grow, there is a strong need for separation technology. Ionic liquids show promise for separating azeotropic refrigerant mixtures as an entrainer in extractive distillation process. Ionic liquids have been investigated with refrigerants for this application since the early 2000s. This review will provide a comprehensive summary of the physical property measurements, equations of state modeling, molecular simulations, separation techniques, and unique materials unitizing ionic liquids for the development of an ionic-liquid-based separation process for azeotropic refrigerant mixtures.
Collapse
Affiliation(s)
- Kalin R Baca
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Karim Al-Barghouti
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Ning Wang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Madelyn G Bennett
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Lucia Matamoros Valenciano
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Tessie L May
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Irene V Xu
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Max Cordry
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Dorothy M Haggard
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Abigail G Haas
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Ashley Heimann
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Abby N Harders
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Hannah G Uhl
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Diego T Melfi
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Andrew D Yancey
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Rajkumar Kore
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Edward J Maginn
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Aaron M Scurto
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| | - Mark B Shiflett
- Wonderful Institute for Sustainable Engineering, 1536 West 15th Street, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, 1530 West 15th Street, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Alkhatib II, Albà CG, Darwish AS, Llovell F, Vega LF. Searching for Sustainable Refrigerants by Bridging Molecular Modeling with Machine Learning. Ind Eng Chem Res 2022; 61:7414-7429. [PMID: 35673400 PMCID: PMC9165071 DOI: 10.1021/acs.iecr.2c00719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
We present here a novel integrated approach employing machine learning algorithms for predicting thermophysical properties of fluids. The approach allows obtaining molecular parameters to be used in the polar soft-statistical associating fluid theory (SAFT) equation of state using molecular descriptors obtained from the conductor-like screening model for real solvents (COSMO-RS). The procedure is used for modeling 18 refrigerants including hydrofluorocarbons, hydrofluoroolefins, and hydrochlorofluoroolefins. The training dataset included six inputs obtained from COSMO-RS and five outputs from polar soft-SAFT parameters, with the accurate algorithm training ensured by its high statistical accuracy. The predicted molecular parameters were used in polar soft-SAFT for evaluating the thermophysical properties of the refrigerants such as density, vapor pressure, heat capacity, enthalpy of vaporization, and speed of sound. Predictions provided a good level of accuracy (AADs = 1.3-10.5%) compared to experimental data, and within a similar level of accuracy using parameters obtained from standard fitting procedures. Moreover, the predicted parameters provided a comparable level of predictive accuracy to parameters obtained from standard procedure when extended to modeling selected binary mixtures. The proposed approach enables bridging the gap in the data of thermodynamic properties of low global warming potential refrigerants, which hinders their technical evaluation and hence their final application.
Collapse
Affiliation(s)
- Ismail
I. I. Alkhatib
- Research
and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, PO Box 127788 Abu Dhabi, United Arab Emirates
- Chemical
Engineering Department, Khalifa University, PO Box 127788 Abu
Dhabi, United Arab Emirates
| | - Carlos G. Albà
- Department
of Chemical Engineering, ETSEQ, Universitat
Rovira i Virgili (URV), Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Ahmad S. Darwish
- Chemical
Engineering Department, Khalifa University, PO Box 127788 Abu
Dhabi, United Arab Emirates
| | - Fèlix Llovell
- Department
of Chemical Engineering, ETSEQ, Universitat
Rovira i Virgili (URV), Avinguda Països Catalans 26, 43007 Tarragona, Spain
| | - Lourdes F. Vega
- Research
and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University, PO Box 127788 Abu Dhabi, United Arab Emirates
- Chemical
Engineering Department, Khalifa University, PO Box 127788 Abu
Dhabi, United Arab Emirates
| |
Collapse
|