Meng F, Wang Y, Cao Q. Synergistic enhancement of redox pairs and functional groups for the removal of phenolic organic pollutants by activated PMS using silica-composited biochar: Mechanism and environmental toxicity assessment.
CHEMOSPHERE 2023;
337:139441. [PMID:
37422218 DOI:
10.1016/j.chemosphere.2023.139441]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
In present work, a novel catalyst of cobalt supported on silica-composited biochar (Co@ACFA-BC) derived from fly ash and agricultural waste was synthesized. A series of characterizations confirmed that Co3O4 and Al/Si-O compounds were successfully embedded on the surface of biochar, which triggered superior catalytic activity for PMS activation towards phenol degradation. Particularly, the Co@ACFA-BC/PMS system could completely degrade phenol in the wide pH range, and was almost unaffected by environmental factors including humic acid (HA), H2PO4-, HCO3-, Cl-, and NO3-. Further quenching experiment and EPR analysis proved that both radical (SO4·-, ·OH, O2·-) and non-radical (1O2) pathways were involved in the catalytic reaction system, and the excellent PMS activation was attributed to the electron pair cycling of Co2+/Co3+ and the active sites provided by Si-O-O and Si/Al-O bonds on the catalyst surface. Meanwhile, the carbon shell effectively inhibited the leaching of metal ions, enabling the Co@ACFA-BC catalyst to maintain excellent catalytic activity after four cycles. Finally, biological acute toxicity assay demonstrated that the toxicity of phenol could be significantly reduced after being treated by Co@ACFA-BC/PMS. Overall, this work provides a promising strategy for solid waste valorization and a feasible methodology for green and efficient treatment of refractory organic pollutants in water environment.
Collapse