Liu H, Hu Z, Ji X. Characterization by Gel Permeation Chromatography of the Molecular Weight of Supramolecular Polymers Generated by Forming Polyrotaxanes through the Introduction of External Stoppers.
Chemistry 2024;
30:e202400099. [PMID:
38212246 DOI:
10.1002/chem.202400099]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Supramolecular polymers find wide applications across diverse domains, and the molecular weight exerts a critical influence on their applicability. Consequently, the measurement of molecular weight for supramolecular polymers assumes paramount significance. Gel Permeation Chromatography (GPC) requiring low-concentration condition is a common characterization employed for molecular weight determination, which is not suitable for supramolecular polymers possessing concentration-independence property. Here, to break this threshold, we synthesized M1 embodying dibenzo-24-crown-8 (DB24C8) moiety as well as dibenzylammonium salt (DBA) group, which was capable of self-assembling into supramolecular polymers terminated with aldehyde groups at its end. Upon the addition of (4- (1,2,2-Triphenylvinyl) phenyl) methylamine (TPE-NH2), supramolecular polymers underwent a transition into polyrotaxanes, for which it was led by the generation of imine bonds. By virtue of GPC, the molecular weight of polyrotaxanes was obtained, then it was available to gain the molecular weight of supramolecular polymers with the help of transformation efficiency.
Collapse