1
|
Li H, Xue S, Cao F, Gao C, Wei Q, Li R, Zhou A, Wang S, Yue X. Enhanced nitrate reduction by metal deposited g-C 3N 4/rGO/TiO 2 Z-schematic photocatalysts: Performance and mechanism comparison of Pd-Cu and Ag. CHEMOSPHERE 2023; 325:138336. [PMID: 36921773 DOI: 10.1016/j.chemosphere.2023.138336] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Deposition of bimetals on Z-scheme photocatalysts has been reported to improve the nitrate nitrogen (NO3-) reduction properties. However, it is not clear whether bimetal deposition possesses advantage over single metal deposition and what is the different reaction mechanisms. In this work, the g-C3N4(Pd-Cu)/rGO/TiO2 and g-C3N4(Ag)/rGO/TiO2 composites with bimetallic Pd-Cu and single metal Ag deposited on the graphitic carbon nitride/reduced graphene oxide/titanium dioxide (g-C3N4/rGO/TiO2) Z-scheme photocatalyst were prepared, and their photocatalytic NO3- reduction properties and the mechanisms under visible light irradiation were studied. The results showed that the NO3- and total nitrogen (TN) removal efficiencies of g-C3N4(Pd-Cu)/rGO/TiO2 were 57.78% and 20.1%, respectively, 1.15 and 1.72 times higher than those of g-C3N4(Ag)/rGO/TiO2. This can be ascribed to that Pd-Cu enriched more electrons and absorbed more NO3- molecules due to the different charge densities, and the NO3- reduction process were enhanced by the staged NO3-→NO2- and NO2-→N2/NH4+ processes on Cu and Pd. The effects of reductive species were demonstrated to be photogenerated electrons > ·OH (·CO2-) > ·O2- in g-C3N4(Ag)/rGO/TiO2, while it was photogenerated electrons > ·O2- > ·OH (·CO2-) in g-C3N4(Pd-Cu)/rGO/TiO2, which may be caused by the better O2 reduction property of the latter. Finally, the cyclic experiment proved the good stability of both materials. This work provided some reference for design of metal deposited Z-scheme photocatalysts for various reduction reactions.
Collapse
Affiliation(s)
- Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Shuai Xue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Fang Cao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Cong Gao
- National Marine Environmental Monitoring Center, Dalian, 116000, China
| | - Qian Wei
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rui Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
2
|
Wang Z, Zhang J, Yan L, Zhao B, Zheng L, Guo H, Yue Y, Han D, Chen X, Li R. A well-fabricated Ru@C material derived from Ru/Zn-MOF with high activity and stability in the hydrogenation of 4-chloronitrobenzene. Phys Chem Chem Phys 2023; 25:8556-8563. [PMID: 36883834 DOI: 10.1039/d2cp05986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
4-Chloroaniline (4-CAN) plays an important role in chemical and industrial production. However, it remains a challenge to avoid the hydrogenation of the C-Cl bond in the synthesis process to improve selectivity under high activity conditions. In this study, we in situ fabricated ruthenium nanoparticles (Ru NPs) containing vacancies inserted into porous carbon (Ru@C-2) as a highly efficient catalyst for the catalytic hydrogenation of 4-chloronitrobenzene (4-CNB) with remarkable conversion (99.9%), selectivity (99.9%), and stability. Experiments and theoretical calculations indicate that the appropriate Ru vacancies affect the charge distribution of the Ru@C-2 catalyst, promote the electron transfer between the Ru metal and support, and increase the active sites of the Ru metal, thus facilitating the adsorption of 4-CNB and the desorption of 4-CAN to improve the activity and stability of the catalyst. This study can provide some enlightenment for the development of new 4-CNB hydrogenation catalysts.
Collapse
Affiliation(s)
- Zijian Wang
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Jiaxin Zhang
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Lele Yan
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Bo Zhao
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Lin Zheng
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Haoran Guo
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Yuxue Yue
- Institute of Industrial Catalysis, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Deman Han
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Xianlang Chen
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| | - Rongrong Li
- Engineering Research Center of Recycling & Comprehensive Utilization of Pharmaceutical and Chemical Waste of Zhejiang Province, Taizhou University, Taizhou 318000, Zhejiang, China.
| |
Collapse
|
3
|
He L, Wang Y, Wang C, Liu Z, Xie Z. Pyridinic nitrogen dominated doping on Pd/carbon catalysts for enhanced hydrogenation performance. Front Chem 2022; 10:1046058. [PMID: 36405331 PMCID: PMC9667039 DOI: 10.3389/fchem.2022.1046058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 09/15/2023] Open
Abstract
The hydrogenation of 4-carboxylbenzaldehyde over Pd catalysts is a crucial process during the production of pure terephthalic acid. Herein, ZIF-8 derived carbon materials (NC) with adjustable N types were synthesized and used as the supports of Pd catalysts. Pd supported on NC with 50.5% of pyridinic N exhibited best hydrogenation activity with a TOF value of 4.1 min-1. The microstructures of NC support and electronic structures of Pd in Pd/NC were investigated by techniques such as XRD, N2 physisorption, XPS, H2-O2 titration and TEM. The nitrogen species in CN surface not only can adjust chemical state and dispersion of Pd nanoparticles (NPs), but also promote the adsorption and activation capability of H2 molecular. Besides, the ratio of Pd0/Pd2+ and Pd dispersion were closely correlated with pyridinic nitrogen content. The improvement in hydrogenation activity and stability of Pd/CN catalyst in relative to Pd/C were ascribed to the synergistic effect of pyridinic nitrogen and active site Pd0.
Collapse
Affiliation(s)
- Limin He
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp, Shanghai, China
| | - Yangdong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp, Shanghai, China
| | - Can Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp, Shanghai, China
| | - Zhicheng Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC Corp, Shanghai, China
| | - Zaiku Xie
- China Petrochemical Corporation (SINOPEC Group), Beijing, China
| |
Collapse
|