1
|
Liu J, Zhang K, Liu X, Xu Q, Li W. Improved in-situ characterization for the scaling-induced wetting in membrane distillation: Unraveling the role of crystalline morphology. WATER RESEARCH 2024; 268:122561. [PMID: 39393181 DOI: 10.1016/j.watres.2024.122561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Despite being recognized as a promising technique for treating high salinity water, membrane distillation (MD) has been plagued by the scaling of sparingly soluble salts. The growth of crystals can not only create additional resistance to evaporating water at the feed-membrane interface, but also alter the hydrophobic network to bridge the feed and distillate (i.e., result in the phenomenon of wetting). When recognizing the uncertain behaviors of calcium sulfate (CaSO4) scaling in MD, this study was motivated to ascertain whether the crystal-membrane interactions could be dependent on the variation in crystalline morphology. In particular, optical coherence tomography (OCT) was employed to characterize the scaling-induced wetting via a direct-observation-through-the-membrane (DOTM) mode, which mitigated the effects of developing an external scaling layer on resolving the crystal-membrane interactions. The improved in-situ characterization suggests that the crystalline morphology of CaSO4 could be effectively regulated by varying the stoichiometry of crystallizing ions; the richness of calcium in the aqueous environment for crystallization would be in favor of weakening the crystal-membrane interactions. The stoichiometry-dependent growth of CaSO4 crystals can be exploited to develop an effective strategy for preventing the hydrophobic network from being wetted or irreversibly damaged.
Collapse
Affiliation(s)
- Jie Liu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, PR China; School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, PR China; Guangdong Nantian Institute of Forensic Science, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, PR China
| | - Kexin Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, PR China
| | - Xin Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, PR China.
| | - Weiyi Li
- School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, PR China.
| |
Collapse
|
2
|
Zhao R, Meng F, Wu Q, Zhong Z, Liu Y, Yang R, Li A, Liu H, Lu Y, Zhang Z, Li Q, Zhao H, Li J, Han L, Zuo K. Ultra-antiwetting Membrane for Hypersaline Water Crystallization in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14929-14939. [PMID: 39126388 DOI: 10.1021/acs.est.4c05283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Membrane distillation (MD) has great potential in the management of hypersaline water for zero liquid discharge (ZLD) due to its high salinity tolerance. However, the membrane wetting issue significantly restricts its practical application. In this study, a composite membrane tailored for extreme concentrations and even crystallization of hypersaline water is synthesized by coating a commercial hydrophobic porous membrane with a composite film containing a dense polyamide layer, a cation exchange layer (CEL), and an anion exchange layer (AEL). When used in direct contact MD for treating a 100 g L-1 NaCl hypersaline solution, the membrane achieves supersaturation of feed solution and a salt crystal yield of 38.0%, with the permeate concentration at <5 mg L-1. The composite membrane also demonstrates ultrahigh antiwetting stability in 360 h of long-term operation. Moreover, ion diffusion analysis reveals that the ultrahigh wetting resistance of the composite membrane is attributed to the bipolar AEL and CEL that eliminate ion crossover. The literature review elucidates that the composite membrane is superior to state-of-the-art membranes. This study demonstrates the great potential of the composite membrane for direct crystallization of hypersaline water, offering a promising approach to filling the gap between reverse osmosis and conventional thermal desalination processes for ZLD application.
Collapse
Affiliation(s)
- Ruixue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fanxu Meng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinghao Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zihan Zhong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanfeng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruotong Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huan Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Yanyu Lu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zishuai Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 319, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Kuichang Zuo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Shi D, Gong T, Qing W, Li X, Shao S. Unique Behaviors and Mechanism of Highly Soluble Salt-Induced Wetting in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14788-14796. [PMID: 36154007 DOI: 10.1021/acs.est.2c03348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Scaling-induced wettinggreatly limits the application of membrane distillation (MD) for the desalination of high-salinity feed. Although highly soluble salts (e.g., NaCl) have high concentrations in this water, their scaling-induced wetting remains overlooked. To unravel the elusive wetting behaviors of highly soluble salts, in this study, we systematically investigated the scaling formation and wetting progress by in situ observation with optical coherence tomography (OCT). Through examining the influence of salt type and vapor flux on the wetting behavior, we revealed that highly soluble salt-induced wetting, especially under high vapor flux, shared several unique features: (1) occurring before the bulk feed reached saturation, (2) no scale layer formation observed, and (3) synchronized wetting progress on the millimeter scale. We demonstrated that a moving scale layer caused these interesting phenomena. The initial high vapor flux induced high concentration and temperature polarizations, which led to crystallization at the gas-liquid interface and the formation of an initial scale layer. On the one hand, this scale layer bridged the water into the hydrophobic pores; on the other hand, it blocked the membrane pores and reduced the vapor flux. In this way, the decreased vapor flux mitigated the concentration/temperature polarizations, and consequently led to the dissolution of the feed-facing side of the scale layer. This dissolution prevented the membrane pores from being completely blocked, facilitating the transportation and crystallization of salts at the distillate-facing side of the scale layer (i.e., the gas-liquid interface), thus the proceeding of the wetting layer.
Collapse
Affiliation(s)
- Danting Shi
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Tengjing Gong
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| | - Weihua Qing
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Xianhui Li
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|